
Using R for Introductory Econometrics
2nd edition

Florian Heiss



Using R for Introductory Econometrics
© Florian Heiss 2020. All rights reserved.

Companion website: http://www.URfIE.net

Address:
Universitätsstraße 1, Geb. 24.31.01.24
40225 Düsseldorf, Germany

http://www.URfIE.net


Contents

Preface . . . . . . . . . . . . . . . . . . . 1

1. Introduction 3
1.1. Getting Started . . . . . . . . . . . 3

1.1.1. Software . . . . . . . . . . . 3
1.1.2. R Scripts . . . . . . . . . . . 4
1.1.3. Packages . . . . . . . . . . . 7
1.1.4. File names and the Work-

ing Directory . . . . . . . . 9
1.1.5. Errors and Warnings . . . . 10
1.1.6. Other Resources . . . . . . 10

1.2. Objects in R . . . . . . . . . . . . . 11
1.2.1. Basic Calculations and Ob-

jects . . . . . . . . . . . . . . 11
1.2.2. Vectors . . . . . . . . . . . . 12
1.2.3. Special Types of Vectors . . 15
1.2.4. Naming and Indexing Vectors 16
1.2.5. Matrices . . . . . . . . . . . 17
1.2.6. Lists . . . . . . . . . . . . . 20

1.3. Data Frames and Data Files . . . . 21
1.3.1. Data Frames . . . . . . . . . 21
1.3.2. Subsets of Data . . . . . . . 22
1.3.3. R Data Files . . . . . . . . . 23
1.3.4. Basic Information on a

Data Set . . . . . . . . . . . 23
1.3.5. Import and Export of Text

Files . . . . . . . . . . . . . 24
1.3.6. Import and Export of Other

Data Formats . . . . . . . . 25
1.3.7. Data Sets in the Examples . 26

1.4. Base Graphics . . . . . . . . . . . . 27
1.4.1. Basic Graphs . . . . . . . . 27
1.4.2. Customizing Graphs with

Options . . . . . . . . . . . 29
1.4.3. Overlaying Several Plots . . 30
1.4.4. Legends . . . . . . . . . . . 31
1.4.5. Exporting to a File . . . . . 33

1.5. Data Manipulation and Visualiza-
tion: The Tidyverse . . . . . . . . . 34
1.5.1. Data visualization: ggplot

Basics . . . . . . . . . . . . . 34

1.5.2. Colors and Shapes in
ggplot Graphs . . . . . . . 36

1.5.3. Fine Tuning of ggplot
Graphs . . . . . . . . . . . . 39

1.5.4. Basic Data Manipulation
with dplyr . . . . . . . . . 41

1.5.5. Pipes . . . . . . . . . . . . . 43
1.5.6. More Advanced Data Ma-

nipulation . . . . . . . . . . 44
1.6. Descriptive Statistics . . . . . . . . 48

1.6.1. Discrete Distributions: Fre-
quencies and Contingency
Tables . . . . . . . . . . . . 48

1.6.2. Continuous Distributions:
Histogram and Density . . 51

1.6.3. Empirical Cumulative Dis-
tribution Function (ECDF) . 52

1.6.4. Fundamental Statistics . . . 54
1.7. Probability Distributions . . . . . . 55

1.7.1. Discrete Distributions . . . 55
1.7.2. Continuous Distributions . 57
1.7.3. Cumulative Distribution

Function (CDF) . . . . . . . 58
1.7.4. Random Draws from Prob-

ability Distributions . . . . 59
1.8. Confidence Intervals and Statisti-

cal Inference . . . . . . . . . . . . . 61
1.8.1. Confidence Intervals . . . . 61
1.8.2. t Tests . . . . . . . . . . . . 64
1.8.3. p Values . . . . . . . . . . . 65
1.8.4. Automatic calculations . . . 66

1.9. More Advanced R . . . . . . . . . . 70
1.9.1. Conditional Execution . . . 70
1.9.2. Loops . . . . . . . . . . . . . 70
1.9.3. Functions . . . . . . . . . . 71
1.9.4. Outlook . . . . . . . . . . . 71

1.10. Monte Carlo Simulation . . . . . . 72
1.10.1. Finite Sample Properties of

Estimators . . . . . . . . . . 72
1.10.2. Asymptotic Properties of

Estimators . . . . . . . . . . 75
1.10.3. Simulation of Confidence

Intervals and t Tests . . . . 78



I. Regression Analysis with
Cross-Sectional Data 81

2. The Simple Regression Model 83
2.1. Simple OLS Regression . . . . . . . 83
2.2. Coefficients, Fitted Values, and

Residuals . . . . . . . . . . . . . . . 88
2.3. Goodness of Fit . . . . . . . . . . . 91
2.4. Nonlinearities . . . . . . . . . . . . 93
2.5. Regression through the Origin and

Regression on a Constant . . . . . 94
2.6. Expected Values, Variances, and

Standard Errors . . . . . . . . . . . 96
2.7. Monte Carlo Simulations . . . . . . 98

2.7.1. One sample . . . . . . . . . 98
2.7.2. Many Samples . . . . . . . 100
2.7.3. Violation of SLR.4 . . . . . 103
2.7.4. Violation of SLR.5 . . . . . 103

3. Multiple Regression Analysis: Estima-
tion 105
3.1. Multiple Regression in Practice . . 105
3.2. OLS in Matrix Form . . . . . . . . 109
3.3. Ceteris Paribus Interpretation and

Omitted Variable Bias . . . . . . . 111
3.4. Standard Errors, Multicollinearity,

and VIF . . . . . . . . . . . . . . . . 113

4. Multiple Regression Analysis: Inference117
4.1. The t Test . . . . . . . . . . . . . . . 117

4.1.1. General Setup . . . . . . . . 117
4.1.2. Standard case . . . . . . . . 118
4.1.3. Other hypotheses . . . . . . 120

4.2. Confidence Intervals . . . . . . . . 122
4.3. Linear Restrictions: F-Tests . . . . 123
4.4. Reporting Regression Results . . . 127

5. Multiple Regression Analysis: OLS
Asymptotics 129
5.1. Simulation Exercises . . . . . . . . 129

5.1.1. Normally Distributed Error
Terms . . . . . . . . . . . . . 129

5.1.2. Non-Normal Error Terms . 130
5.1.3. (Not) Conditioning on the

Regressors . . . . . . . . . . 133
5.2. LM Test . . . . . . . . . . . . . . . . 135

6. Multiple Regression Analysis: Further
Issues 137
6.1. Model Formulae . . . . . . . . . . . 137

6.1.1. Data Scaling: Arithmetic
Operations Within a Formula 137

6.1.2. Standardization: Beta Coef-
ficients . . . . . . . . . . . . 139

6.1.3. Logarithms . . . . . . . . . 140
6.1.4. Quadratics and Polynomials 140
6.1.5. ANOVA Tables . . . . . . . 142
6.1.6. Interaction Terms . . . . . . 144

6.2. Prediction . . . . . . . . . . . . . . 146
6.2.1. Confidence Intervals for

Predictions . . . . . . . . . . 146
6.2.2. Prediction Intervals . . . . . 148
6.2.3. Effect Plots for Nonlinear

Specifications . . . . . . . . 148

7. Multiple Regression Analysis with
Qualitative Regressors 151
7.1. Linear Regression with Dummy

Variables as Regressors . . . . . . . 151
7.2. Logical Variables . . . . . . . . . . 152
7.3. Factor variables . . . . . . . . . . . 154
7.4. Breaking a Numeric Variable Into

Categories . . . . . . . . . . . . . . 156
7.5. Interactions and Differences in Re-

gression Functions Across Groups 158

8. Heteroscedasticity 161
8.1. Heteroscedasticity-Robust Inference 161
8.2. Heteroscedasticity Tests . . . . . . 165
8.3. Weighted Least Squares . . . . . . 168

9. More on Specification and Data Issues 173
9.1. Functional Form Misspecification . 173
9.2. Measurement Error . . . . . . . . . 175
9.3. Missing Data and Nonrandom

Samples . . . . . . . . . . . . . . . 178
9.4. Outlying Observations . . . . . . . 181
9.5. Least Absolute Deviations (LAD)

Estimation . . . . . . . . . . . . . . 182



II. Regression Analysis with Time
Series Data 183

10.Basic Regression Analysis with Time
Series Data 185
10.1. Static Time Series Models . . . . . 185
10.2. Time Series Data Types in R . . . . 186

10.2.1. Equispaced Time Series in R 186
10.2.2. Irregular Time Series in R . 187

10.3. Other Time Series Models . . . . . 191
10.3.1. The dynlm Package . . . . 191
10.3.2. Finite Distributed Lag

Models . . . . . . . . . . . . 191
10.3.3. Trends . . . . . . . . . . . . 194
10.3.4. Seasonality . . . . . . . . . 195

11.Further Issues In Using OLS with Time
Series Data 197
11.1. Asymptotics with Time Series . . . 197
11.2. The Nature of Highly Persistent

Time Series . . . . . . . . . . . . . . 200
11.3. Differences of Highly Persistent

Time Series . . . . . . . . . . . . . . 203
11.4. Regression with First Differences . 204

12.Serial Correlation and Heteroscedas-
ticity in Time Series Regressions 205
12.1. Testing for Serial Correlation of the

Error Term . . . . . . . . . . . . . . 205
12.2. FGLS Estimation . . . . . . . . . . 209
12.3. Serial Correlation-Robust Infer-

ence with OLS . . . . . . . . . . . . 210
12.4. Autoregressive Conditional Het-

eroscedasticity . . . . . . . . . . . . 211

III. Advanced Topics 213

13.Pooling Cross-Sections Across Time:
Simple Panel Data Methods 215
13.1. Pooled Cross-Sections . . . . . . . 215
13.2. Difference-in-Differences . . . . . . 216
13.3. Organizing Panel Data . . . . . . . 219
13.4. Panel-specific computations . . . . 220
13.5. First Differenced Estimator . . . . 222

14.Advanced Panel Data Methods 225
14.1. Fixed Effects Estimation . . . . . . 225
14.2. Random Effects Models . . . . . . 227

14.3. Dummy Variable Regression and
Correlated Random Effects . . . . 230

14.4. Robust (Clustered) Standard Errors 234

15.Instrumental Variables Estimation
and Two Stage Least Squares 237
15.1. Instrumental Variables in Simple

Regression Models . . . . . . . . . 237
15.2. More Exogenous Regressors . . . . 239
15.3. Two Stage Least Squares . . . . . . 240
15.4. Testing for Exogeneity of the Re-

gressors . . . . . . . . . . . . . . . . 242
15.5. Testing Overidentifying Restrictions 243
15.6. Instrumental Variables with Panel

Data . . . . . . . . . . . . . . . . . . 243

16.Simultaneous Equations Models 247
16.1. Setup and Notation . . . . . . . . . 247
16.2. Estimation by 2SLS . . . . . . . . . 248
16.3. Joint Estimation of System . . . . . 249
16.4. Outlook: Estimation by 3SLS . . . 251

17.Limited Dependent Variable Models
and Sample Selection Corrections 253
17.1. Binary Responses . . . . . . . . . . 253

17.1.1. Linear Probability Models . 253
17.1.2. Logit and Probit Models:

Estimation . . . . . . . . . . 255
17.1.3. Inference . . . . . . . . . . . 258
17.1.4. Predictions . . . . . . . . . . 259
17.1.5. Partial Effects . . . . . . . . 260

17.2. Count Data: The Poisson Regres-
sion Model . . . . . . . . . . . . . . 263

17.3. Corner Solution Responses: The
Tobit Model . . . . . . . . . . . . . 266

17.4. Censored and Truncated Regres-
sion Models . . . . . . . . . . . . . 269

17.5. Sample Selection Corrections . . . 271

18.Advanced Time Series Topics 273
18.1. Infinite Distributed Lag Models . . 273
18.2. Testing for Unit Roots . . . . . . . 275
18.3. Spurious Regression . . . . . . . . 278
18.4. Cointegration and Error Correc-

tion Models . . . . . . . . . . . . . 280
18.5. Forecasting . . . . . . . . . . . . . . 281

19.Carrying Out an Empirical Project 285
19.1. Working with R Scripts . . . . . . . 285



19.2. Logging Output in Text Files . . . 287
19.3. Formatted Documents and Re-

ports with R Markdown . . . . . . 287
19.3.1. Basics . . . . . . . . . . . . . 287
19.3.2. Advanced Features . . . . . 288
19.3.3. Bottom Line . . . . . . . . . 291

19.4. Combining R with LaTeX . . . . . 293
19.4.1. Automatic Document Gen-

eration using Sweave and
knitr . . . . . . . . . . . . 293

19.4.2. Separating R and LATEX code 298

IV. Appendices 303

R Scripts 305
1. Scripts Used in Chapter 01 . . . . 305
2. Scripts Used in Chapter 02 . . . . 317
3. Scripts Used in Chapter 03 . . . . 324
4. Scripts Used in Chapter 04 . . . . 326
5. Scripts Used in Chapter 05 . . . . 327
6. Scripts Used in Chapter 06 . . . . 329
7. Scripts Used in Chapter 07 . . . . 332
8. Scripts Used in Chapter 08 . . . . 333
9. Scripts Used in Chapter 09 . . . . 335
10. Scripts Used in Chapter 10 . . . . 338
11. Scripts Used in Chapter 11 . . . . 340
12. Scripts Used in Chapter 12 . . . . 342
13. Scripts Used in Chapter 13 . . . . 344
14. Scripts Used in Chapter 14 . . . . 346
15. Scripts Used in Chapter 15 . . . . 348
16. Scripts Used in Chapter 16 . . . . 350
17. Scripts Used in Chapter 17 . . . . 350
18. Scripts Used in Chapter 18 . . . . 355
19. Scripts Used in Chapter 19 . . . . 357

Bibliography 359

List of Wooldridge (2019) Examples 361

Index 363



List of Tables

1.1. R functions for important arith-
metic calculations . . . . . . . . . . 11

1.2. R functions specifically for vectors 13
1.3. Logical Operators . . . . . . . . . . 15
1.4. R functions for descriptive statistics 54
1.5. R functions for statistical distribu-

tions . . . . . . . . . . . . . . . . . . 56

4.1. One- and two-tailed t Tests for H0 :
β j = aj . . . . . . . . . . . . . . . . 120

13.1. Panel-specific computations . . . . 220





List of Figures

1.1. Plain R user interface with some
text entered . . . . . . . . . . . . . 4

1.2. RStudio user interface . . . . . . . 5
1.3. RStudio with the script

First-R-Script.R . . . . . . . . 6
1.4. Examples of text data files . . . . . 25
1.5. Examples of function plots using

curve . . . . . . . . . . . . . . . . 27
1.6. Examples of point and line plots

using plot(x,y) . . . . . . . . . . 28
1.7. Overlayed plots . . . . . . . . . . . 30
1.8. Graph generated by matplot . . . 31
1.9. Using legends . . . . . . . . . . . . 32
1.10. Simple graphs created by ggplot2 36
1.11. Color and shapes in ggplot2 I . . 37
1.12. Color and shapes in ggplot2 II . 38
1.13. Fine tuning of ggplot2 graphs . . 40
1.14. Data manipulation in the tidy-

verse: Example 1 . . . . . . . . . . 43
1.15. Advanced ggplot2 graph of

country averages . . . . . . . . . . 45
1.16. Simple ggplot2 graph of country

averages . . . . . . . . . . . . . . . 47
1.17. Pie and bar plots . . . . . . . . . . 50
1.18. Histograms . . . . . . . . . . . . . . 52
1.19. Kernel Density Plots . . . . . . . . 53
1.20. Empirical CDF . . . . . . . . . . . . 53
1.21. Box Plots . . . . . . . . . . . . . . . 55
1.22. Plots of the pmf and pdf . . . . . . 57
1.23. Plots of the cdf of discrete and con-

tinuous RV . . . . . . . . . . . . . . 59
1.24. Simulated and theoretical density

of Ȳ . . . . . . . . . . . . . . . . . . 74
1.25. Density of Ȳ with different sample

sizes . . . . . . . . . . . . . . . . . . 76
1.26. Density of the χ2 distribution with

1 d.f. . . . . . . . . . . . . . . . . . 77
1.27. Density of Ȳ with different sample

sizes: χ2 distribution . . . . . . . . 77
1.28. Simulation results: First 100 confi-

dence intervals . . . . . . . . . . . 79

2.1. OLS regression line for Example 2-3 86
2.2. OLS regression line for Example 2-5 87
2.3. Regression through the Origin and

on a Constant . . . . . . . . . . . . 95
2.4. Simulated Sample and OLS Re-

gression Line . . . . . . . . . . . . . 99
2.5. Population and Simulated OLS Re-

gression Lines . . . . . . . . . . . . 102

5.1. Density of β̂1 with different sam-
ple sizes: normal error terms . . . 131

5.2. Density Functions of the Simu-
lated Error Terms . . . . . . . . . . 131

5.3. Density of β̂1 with different sam-
ple sizes: non-normal error terms 132

5.4. Density of β̂1 with different sam-
ple sizes: varying regressors . . . . 134

6.1. Nonlinear Effects in Example 6.2 . 150

9.1. Outliers: Distribution of studen-
tized residuals . . . . . . . . . . . . 181

10.1. Time series plot: Imports of bar-
ium chloride from China . . . . . . 187

10.2. Time series plot: Interest rate (3-
month T-bills) . . . . . . . . . . . . 188

10.3. Time series plot: Stock prices of
Ford Motor Company . . . . . . . 190

11.1. Time series plot: Daily stock re-
turns 2008–2016, Apple Inc. . . . . 200

11.2. Simulations of a random walk pro-
cess . . . . . . . . . . . . . . . . . . 201

11.3. Simulations of a random walk pro-
cess with drift . . . . . . . . . . . . 202

11.4. Simulations of a random walk pro-
cess with drift: first differences . . 203

17.1. Predictions from binary response
models (simulated data) . . . . . . 260

17.2. Partial effects for binary response
models (simulated data) . . . . . . 261

17.3. Conditional means for the Tobit
model . . . . . . . . . . . . . . . . . 266

17.4. Truncated regression: simulated
example . . . . . . . . . . . . . . . 271

18.1. Spurious regression: simulated
data from Script 18.4 . . . . . . . . 278



18.2. Out-of-sample forecasts for unem-
ployment . . . . . . . . . . . . . . . 284

19.1. R Markdown example: different
output formats . . . . . . . . . . . 289

19.2. R Markdown examples: HTML
output . . . . . . . . . . . . . . . . 292

19.3. PDF Result from knitr-example.Rnw297



Preface
R is a powerful programming language that is especially well-suited for statistical analyses and the
creation of graphics. In many areas of applied statistics, R is the most widely used software package.
In other areas, such as econometrics, it is quickly catching up to commercial software packages.
R is constantly adjusted and extended by a large user community so that many state-of-the-art
econometric methods are available very quickly. R is powerful and versatile for the advanced user
and is also quite easy for a beginner to learn and use.

The software package R is completely free and available for most operating systems. When using
it in econometrics courses, students can easily download a copy to their own computers and use it
at home (or their favorite cafés) to replicate examples and work on take-home assignments. This
hands-on experience is essential for the understanding of the econometric models and methods. It
also prepares students to conduct their own empirical analyses for their theses, research projects,
and professional work.

Several excellent books introduce R and its application to statistics; for example, Dalgaard (2008);
Field, Miles, and Field (2012); Hothorn and Everitt (2014); and Verzani (2014). The books of Kleiber
and Zeileis (2008) and Fox and Weisberg (2011) not only introduce applied econometrics with R but
also provide their own extensions to R, which we will make use of here. A problem I encountered
when teaching introductory econometrics classes is that the textbooks that also introduce R do not
discuss econometrics in the breadth and depth required to be used as the main text. Conversely,
my favorite introductory econometrics textbooks do not cover R. Although it is possible to combine
a good econometrics textbook with an unrelated introduction to R, this creates substantial hurdles
because the topics and order of presentation are different, and the terminology and notation are
inconsistent.

This book does not attempt to provide a self-contained discussion of econometric models and
methods. It also does not give an independent general introduction to R. Instead, it builds on the
excellent and popular textbook “Introductory Econometrics” by Wooldridge (2019). It is compatible
in terms of topics, organization, terminology, and notation, and is designed for a seamless transition
from theory to practice.

The first chapter provides a gentle introduction to R, covers some of the topics of basic statistics
and probability presented in the appendix of Wooldridge (2019), and introduces Monte Carlo simu-
lation as an additional tool. The other chapters have the same names and cover the same material
as the respective chapters in Wooldridge (2019). Assuming the reader has worked through the ma-
terial discussed there, this book explains and demonstrates how to implement everything in R and
replicates many textbook examples. We also open some black boxes of the built-in functions for
estimation and inference by directly applying the formulas known from the textbook to reproduce
the results. Some supplementary analyses provide additional intuition and insights.

The book is designed mainly for students of introductory econometrics who ideally use
Wooldridge (2019) as their main textbook. It can also be useful for readers who are familiar with
econometrics and possibly other software packages. For them, it offers an introduction to R and can
be used to look up the implementation of standard econometric methods.

Because we are explicitly building on Wooldridge (2019), it is useful to have a copy at hand while
working through this book. The fifth edition of Wooldridge (2013) can be used as well; older editions
are not perfectly compatible with regard to references to sections and examples. The stripped-down



2 Preface

textbook sold only in Europe, the Middle East, and Africa (Wooldridge, 2014) is mostly consistent,
but lacks, among other things, the appendices on fundamental math, probability, and statistics.

All computer code used in this book can be downloaded to make it easier to replicate the results
and tinker with the specifications. The companion website also provides the full text of this book
for online viewing and additional material. It is located at

http://www.URfIE.net

What’s new in the 2nd edition

Compared to the first edition of this book, the most relevant changes are the following:

• The new Section 1.5 introduces the concepts of the “tidyverse”. This set of packages offers a
convenient, powerful, and recently very popular approach to data manipulation and visualiza-
tion. Knowledge of the tidyverse is not required for the remainder of the book but very useful
for working with real world data.

• Section 1.3.6 on data import and export has been updated. It now stresses the use of the
packages haven and rio which are newer and for most applications both more powerful and
more convenient than the approaches presented in the first edition.

• There is a new R package wooldridge by Justin M. Shea and Kennth H. Brown. It very
conveniently provides all example data sets. All example R scripts have been updated to use
this package instead of loading the data from a data file.

• When discussing financial time series data in Section 10.2.2, the 2nd edition now uses the
quantmod instead of the pdfetch package.

• An introduction of ANOVA tables has been added in Sections 6.1.5, 7.3, and 7.4.
• Various smaller additions are added and numerous errors, typos, and unclear explanations

have been fixed.

Many readers have contributed by pointing out errors and other problems, asking questions that
helped to identify unclear explanations and making suggestions for improvements. I am especially
grateful to Gawon Yoon, Liviu Andronic, Daniel Gerigk, Daniel Brunner and Lars Grönberg.

Also Interested in Python?

Finally, let me mention the new sister book “Using Python for Introductory Econometrics”, coau-
thored by Daniel Brunner and published at the same time as this second edition of the R book, see
http://www.UPfIE.net. We are using the same structure, the same examples, and even much
of the same text where it makes sense. This decision was not only made for laziness. It also helps
readers to easily switch back and forth between the books. And if somebody worked through this R
book, she can easily look up the pythonian way to achieve exactly the same results and vice versa,
making it especially easy to learn both languages. Which one should you start with (given your
professor hasn’t made the decision for you)? Both share many of the advantages like having a huge
and active user community, being widely used inside and outside of academia and being freely avail-
able. R is traditionally used in statistics, while Python is dominant in machine learning and artificial
intelligence. These origins are still somewhat reflected in the availability of specialized extension
packages. But most of all data analysis and econometrics tasks can be equally well performed in
both packages. At the end, it’s most important point is to get used to the workflow of some dedi-
cated data analysis software package instead of not using any software or a spreadsheet program for
data analysis.

http://www.URfIE.net
http://www.UPfIE.net


1. Introduction

Learning to use R is straightforward but not trivial. This chapter prepares us for implementing
the actual econometric analyses discussed in the following chapters. First, we introduce the basics
of the software system R in Section 1.1. In order to build a solid foundation we can later rely on,
Chapters 1.2 through 1.4 cover the most important concepts and approaches used in R like working
with objects, dealing with data, and generating graphs. Sections 1.6 through 1.8 quickly go over the
most fundamental concepts in statistics and probability and show how they can be implemented in
R. More advanced R topics like conditional execution, loops, and functions are presented in Section
1.9. They are not really necessary for most of the material in this book. An exception is Monte Carlo
simulation which is introduced in Section 1.10.

1.1. Getting Started

Before we can get going, we have to find and download the relevant software, figure out how the
examples presented in this book can be easily replicated and tinkered with, and understand the most
basic aspects of R. That is what this section is all about.

1.1.1. Software

R is a free and open source software. Its homepage is http://www.r-project.org/. There, a
wealth of information is available as well as the software itself. Most of the readers of this book will
not want to compile the software themselves, so downloading the pre-compiled binary distributions
is recommended. They are available for Windows, Mac, and Linux systems. Alternatively, Microsoft
R Open (MRO) is a 100% compatible open source R distribution which is optimized for computa-
tional speed.1 It is available at https://mran.microsoft.com/open/ for all relevant operating
systems.

After downloading, installing, and running R or MRO, the program window will look similar to
the screen shot in Figure 1.1. It provides some basic information on R and the installed version.
Right to the > sign is the prompt where the user can type commands for R to evaluate.

We can type whatever we want here. After pressing the return key ( ←↩ ), the line is terminated, R
tries to make sense out of what is written and gives an appropriate answer. In the example shown in
Figure 1.1, this was done four times. The texts we typed are shown next to the “>” sign, R answers
under the respective line next to the “[1]”.

Our first attempt did not work out well: We have got an error message. Unfortunately, R does not
comprehend the language of Shakespeare. We will have to adjust and learn to speak R’s less poetic
language. The other experiments were more successful: We gave R simple computational tasks and
got the result (next to a “[1]”). The syntax should be easy to understand – apparently, R can do
simple addition, deals with the parentheses in the expected way, can calculate square roots (using
the term sqrt) and knows the number π.

1In case you were wondering: MRO uses multi-threaded BLAS/LAPACK libraries and is therefore especially powerful for
computations which involve large matrices.

http://www.r-project.org/
https://mran.microsoft.com/open/


4 1. Introduction

Figure 1.1. Plain R user interface with some text entered

R is used by typing commands such as these. Not only Apple users may be less than impressed
by the design of the user interface and the way the software is used. There are various approaches
to make it more user friendly by providing a different user interface added on top of plain R.
Notable examples include R commander, Deducer, RKWard, and RStudio. In the following, we will
use the latter which can be downloaded free of charge for the most common operating systems at
http://www.rstudio.com/.

A screen shot of the user interface is shown in Figure 1.2. There are several sub-windows. The
big one on the left named “Console” looks very similar and behaves exactly the same as the plain
R window. In addition, there are other windows and tabs some of which are obvious (like “Help”).
The usefulness of others will become clear soon. We will show some RStudio-specific tips and tricks
below, but all the calculations can be done with any user interface and plain R as well.

Here are a few quick tricks for working in the Console of Rstudio:
• When starting to type a command, press the tabulator key −−→−−→ to see a list of suggested

commands along with a short description. Typing sq followed by −−→−−→ gives a list of all R
commands starting with sq.

• The F1 function key opens the full help page for the current command in the help window
(bottom right by default).2 The same can be achieved by typing ?commmand.

• With the ↑ and ↓ arrow keys, we can scroll through the previously entered commands to
repeat or correct them.

• With Ctrl on Windows or Command on a Mac pressed, ↑ will give you a list of all previous
commands. This list is also available in the “History” window (top right by default).

1.1.2. R Scripts

As already seen, we will have to get used to interacting with our software using written commands.
While this may seem odd to readers who do not have any experience with similar software at this
point, it is actually very common for econometrics software and there are good reasons for this. An

2On some computers, the function keys are set to change the display brightness, volume, and the like by default. This can
be changed in the system settings.

http://www.rstudio.com/


1.1. Getting Started 5

Figure 1.2. RStudio user interface

important advantage is that we can easily collect all commands we need for a project in a text file
called R script.

An R script contains all commands including those for reading the raw data, data manipulation,
estimation, post-estimation analyses, and the creation of graphs and tables. In a complex project,
these tasks can be divided into separate R scripts. The point is that the script(s) together with the
raw data generate the output used in the term paper, thesis, or research paper. We can then ask R to
evaluate all or some of the commands listed in the R script at once.

This is important since a key feature of the scientific method is reproducibility. Our thesis adviser
as well as the referee in an academic peer review process or another researcher who wishes to build
on our analyses must be able to fully understand where the results come from. This is easy if we can
simply present our R script which has all the answers.

Working with R scripts is not only best practice from a scientific perspective, but also very con-
venient once we get used to it. In a nontrivial data analysis project, it is very hard to remember all
the steps involved. If we manipulate the data for example by directly changing the numbers in a
spreadsheet, we will never be able to keep track of everything we did. Each time we make a mistake
(which is impossible to avoid), we can simply correct the command and let R start from scratch by
a simple mouse click if we are using scripts. And if there is a change in the raw data set, we can
simply rerun everything and get the updated tables and figures instantly.

Using R scripts is straightforward: We just write our commands into a text file and save it with
a “.R” extension. When using a user interface like RStudio, working with scripts is especially
convenient since it is equipped with a specialized editor for script files. To open the editor for
creating a new R script, use the menu File→New→R Script, or click on the symbol in the top
left corner, or press the buttons Ctrl + Shift ⇑ + N on Windows and Command + Shift ⇑ + N



6 1. Introduction

Figure 1.3. RStudio with the script First-R-Script.R

simultaneously.
The window that opens in the top left part is the script editor. We can type arbitrary text, begin a

new line with the return key, and navigate using the mouse or the ↑ ↓ ← → arrow keys. Our
goal is not to type arbitrary text but sensible R commands. In the editor, we can also use tricks like
code completion that work in Console window as described above. A new command is generally
started in a new line, but also a semicolon “;” can be used if we want to cram more than one
command into one line – which is often not a good idea in terms of readability.

An extremely useful tool to make R scripts more readable are comments. These are lines beginning
with a #. These lines are not evaluated by R but can (and should) be used to structure the script and
explain the steps. In the editor, comments are by default displayed in green to further increase the
readability of the script. R Scripts can be saved and opened using the File menu.

Given an R script, we can send lines of code to R to be evaluated. To run the line in which the
cursor is, click on the button on top of the editor or simply press Ctrl + ←↩ on Windows and
Command + ←↩ on a Mac. If we highlight multiple lines (with the mouse or by holding Shift ⇑

while navigating), all are evaluated. The whole script can be highlighted by pressing Ctrl + A on
Windows or Command + A on a Mac.

Figure 1.3 shows a screenshot of RStudio with an R script saved as “First-R-Script.R”. It consists
of six lines in total including three comments. It has been executed as can be seen in the Console
window: The lines in the scripts are repeated next to the > symbols and the answer of R (if there is
any) follows as though we had typed the commands directly into the Console.

In what follows, we will do everything using R scripts. All these scripts are available for download
to make it easy and convenient to reproduce all contents in real time when reading this book. As



1.1. Getting Started 7

already mentioned, the address is
http://www.URfIE.net

They are also printed in Appendix IV. In the text, we will usually only show the results since they
also include the commands. Input is printed in bold with the > at the beginning of the line similar
to the display in the Console window. R’s response (if any) follows in standard font. Script 1.1
(R-as-a-Calculator.R) is an example in which R is used for simple tasks any basic calculator
can do. The R script and output are:

Script 1.1: R-as-a-Calculator.R
1+1
5*(4-1)^2
sqrt( log(10) )

Output of Script 1.1: R-as-a-Calculator.R

> 1+1
[1] 2

> 5*(4-1)^2
[1] 45

> sqrt( log(10) )
[1] 1.517427

We will discuss some additional hints for efficiently working with R scripts in Section 19.

1.1.3. Packages

The functionality of R can be extended relatively easily by advanced users. This is not only useful
for those who are able and willing to do this, but also for a novice user who can easily make use of
a wealth of extensions generated by a big and active community. Since these extensions are mostly
programmed in R, everybody can check and improve the code submitted by a user, so the quality
control works very well.

These extensions are called packages. The standard distribution of R already comes with a number
of packages. In RStudio, the list of currently installed packages can be seen in the “Packages”
window (bottom right by default). A click on the package name opens the corresponding help file
which describes what functionality it provides and how it works. This package index can also be
activated with help(package="package name").

On top of the packages that come with the standard installation, there are countless packages
available for download. If they meet certain quality criteria, they can be published on the official
“Comprehensive R Archive Network” (CRAN) servers at http://cran.r-project.org. Down-
loading and installing these packages is especially simple: In the Packages window of RStudio, click
on “Install Packages”, enter the name of the package and click on “Install”. If you prefer to do
it using code, here is how it works: install.packages("package name"). In both cases, the
package is added to our package list and is ready to be used.

In order to use a package in an R session, we have to activate it. The can be done by clicking on
the check box next to the package name. 3 Instead of having to click on a number of check boxes

3The reason why not all installed packages are loaded automatically is that R saves valuable start-up time and system
resources and might be able to avoid conflicts between some packages.

http://www.URfIE.net
http://cran.r-project.org


8 1. Introduction

in the “Packages” window before we can run an R script (and having to know which ones), it is
much more elegant to instead automatically activate the required packages by lines of code within
the script. This is done with the command library(package name).4 After activating a package,
nothing obvious happens immediately, but R understands more commands.

If we just want to use some function from a package once, it might not be worthwhile to load
the whole package. Instead, we can just write package::function(...). For example, most
common data sets can be imported using the function import from the package rio, see Section
1.3.6. Here is how to use it:

• We can either load the package and call the function:
library(rio)
import(filename)

• Or we call the function without loading the whole package:
rio::import(filename)

Packages can also contain data sets. The datasets package contains a number of example data
sets, see help(package="datasets"). It is included in standard R installations and loaded by de-
fault at startup. In this book, we heavily use the wooldridge package which makes all example data
sets conveniently available see help(package="wooldridge") for a list. We can simply load a
data set, for example the one named affairs, with data(affairs, package="wooldridge").

There are thousands of packages provided at the CRAN. Here is a list of those we will use through-
out this book:

• AER (“Applied Econometrics with R”): Provided with the book with the same name by Kleiber
and Zeileis (2008). Provides some new commands, e.g. for instrumental variables estimation
and many interesting data sets.

• car (“Companion to Applied Regression”): A comprehensive package that comes with the
book of Fox and Weisberg (2011). Provides many new commands and data sets.

• censReg: Censored regression/tobit models.
• dummies: Automatically generating dummy/indicator variables.
• dynlm: Dynamic linear regression for time series.
• effects: Graphical and tabular illustration of partial effects, see Fox (2003).
• ggplot2: Advanced and powerful graphics, see Wickham (2009) and Chang (2012).
• knitr: Combine R and LATEX code in one document, see Xie (2015).
• lmtest (“Testing Linear Regression Models”): Includes many useful tests for the linear regres-

sion model.
• maps: Draw geographical maps.
• mfx: Marginal effects, odds ratios and incidence rate ratios for GLMs.
• orcutt: Cochrane-Orcutt estimator for serially correlated errors.
• plm (“Linear Models for Panel Data”): A large collection of panel data methods, see Croissant

and Millo (2008).
• quantmod: Quantitative Financial Modelling, see http://www.quantmod.com.
• quantreg: Quantile regression, especially least absolute deviation (LAD) regression, see

Koenker (2012).
• rio: (“A Swiss-Army Knife for Data I/O”): Conveniently import and export data files.
• rmarkdown: Convert R Markdown documents into HTML, MS Word, and PDF.
• sampleSelection: Sample selection models, see Toomet and Henningsen (2008).

4The command require does almost the same as library.

http://www.quantmod.com


1.1. Getting Started 9

• sandwich: Different “robust” covariance matrix estimators, see Zeileis (2004).
• stargazer: Formatted tables of regression results, see Hlavac (2013).
• survival: Survival analysis and censored regression models, see Therneau and Grambsch

(2000).
• systemfit: Estimation of simultaneous equations models, see Henningsen and Hamann

(2007).
• truncreg: Truncated Gaussian response models.
• tseries: Time series analysis and computational finance.
• urca: Unit root and cointegration tests for time series data.
• vars: (Structural) vector autoregressive and error correction models, see Pfaff (2008).
• xtable: Export tables to LaTeX or HTML.
• xts (“eXtensible Time Series”): Irregular time series , see Ryan and Ulrich (2008).
• WDI: Search, extract, and format data from the World Bank’s World Development Indicators.
• wooldridge: Data sets from the textbook of Wooldridge (2019).
• zoo (“Zeileis’ Ordered Observations”): Irregular time series, see Zeileis and Grothendieck

(2005).

Script 1.2 (Install-Packages.R) installs all these packages. Of course, it only has to be run
once per computer/user and needs an active internet connection.

1.1.4. File names and the Working Directory

There are several possibilities for R to interact with files. The most important ones are to load, save,
import, or export a data file. We might also want to save a generated figure as a graphics file or store
regression tables as text, spreadsheet, or LATEX files.

Whenever we provide R with a file name, it can include the full path on the computer. Note that
the path separator has to be the forward slash / instead of the backslash \ which is common on MS
Windows computers. So the full (i.e. “absolute”) path to a script file might be something like
C:/Users/MyUserName/Documents/MyRProject/MyScript.R
on a Windows system or
~/MyRProject/MyScript.R
on a Mac or Linux system.
Hint: Also R installations on Windows machine recognize a path like ~/MyRProject/MyScript.R.
Here, ~ refers to the “Documents” folder of the current user.

If we do not provide any path, R will use the current “working directory” for reading or writing
files. It can be obtained by the command getwd(). In RStudio, it is also displayed on top of the Con-
sole window. To change the working directory, use the command setwd(path). Relative paths, are
interpreted relative to the current working directory. For a neat file organization, best practice is to
generate a directory for each project (say MyRProject) with several sub-directories (say Rscripts,
data, and figures). At the beginning of our script, we can use setwd(~/MyRProject) and after-
wards refer to a data set in the respective sub-directory as data/MyData.RData and to a graphics
file as figures/MyFigure.png .5

5For working with data sets, see Section 1.3.



10 1. Introduction

1.1.5. Errors and Warnings

Something you will experience very soon when starting to work with R (or any other similar software
package) is that you will make mistakes. The main difference to learning to ride a bicycle is that
when learning to use R, mistakes will not hurt. Another difference is that even people who have
been using R for years make mistakes all the time.

Many mistakes will cause R to complain in the form of error messages or warnings displayed
in red. An important part of learning R is to roughly get an idea of what went wrong from these
messages. Here is a list of frequent error messages and warnings you might get:

• Error: object ’x’ not found: We have tried to use a variable x that isn’t defined (yet).
Could also be due to a typo in the variable name.

• Error in rio::import("xyz.dta") : No such file: R wasn’t able to open the file.
Check the working directory, path, file name.

• Error: could not find function "srot": We have used the expression srot(...)
so R assumes we want to call a function. But it doesn’t know a function with that name. Could
be a typo (we actually wanted to type sort). Or the function is defined in a package we haven’t
loaded yet, see Section 1.1.3.

• [...] there is no package called ‘roi’: We mistyped the package name.
Or the required package is not installed on the computer. In this case, install it using
install.packages, see Section 1.1.3.

• Error: ’\U’ used without hex digits in character string starting
"C:\U": Most likely, you’re using a Windows machine and gave R a file path like
"C:\Users\..." Remember not to use the backslash \ in file paths. Instead, write
"C:/Users/...", see Section 1.1.4.

There are countless other error messages and warnings you may encounter. Some of them are easy
to interpret such as In log(-1) : NaNs produced. Others might require more investigative
prowess. Often, the search engine of your choice will be helpful.

1.1.6. Other Resources

There are many useful resources helping to learn and use R. Useful books on R in general include
Matloff (2011), Teetor (2011), Wickham and Grolemund (2016), and many others. Dalgaard (2008),
Field, Miles, and Field (2012), Hothorn and Everitt (2014), and Verzani (2014) all introduce statistics
with R. General econometrics with R is covered by Kleiber and Zeileis (2008) and Fox and Weisberg
(2011).

There are also countless specialized books. Specific book series are published by
• O’Reilly: http://shop.oreilly.com/category/browse-subjects/programming/r.do
• Springer: http://www.springer.com/series/6991
• Chapman & Hall/CRC: http://www.crcpress.com/browse/series/crctherser

Since R has a very active user community, there is also a wealth of information available for free
on the internet. Here are some suggestions:

• The R manuals available at the Comprehensive R Archive Network
http://www.r-project.org

• Quick-R: A nice introduction to R with simple examples
http://www.statmethods.net

• Cookbook for R: Useful examples for all kinds of R problems
http://www.cookbook-r.com

http://shop.oreilly.com/category/browse-subjects/programming/r.do
http://www.springer.com/series/6991
http://www.crcpress.com/browse/series/crctherser
http://www.r-project.org
http://www.statmethods.net
http://www.cookbook-r.com


1.2. Objects in R 11

• R-bloggers: News and blogs about R
http://www.r-bloggers.com

• Planet R: Site aggregator, all the latest news around R
http://planetr.stderr.org

• RSeek: Search engine for R topics
http://rseek.org

• r4stats.com: Articles, blogs and other resources for doing statistics with R
http://r4stats.com

• Stack Overflow: A general discussion forum for programmers, including many R users
http://stackoverflow.com

• Cross Validated: Discussion forum on statistics and data analysis with an active R community
http://stats.stackexchange.com

When using your favorite search engine, searching for the single letter R is not especially promis-
ing. Instead, search engines know the search term rstats. Likewise, for example the relevant
Twitter hashtag is #rstats.

1.2. Objects in R

R can work with numbers, vectors, matrices, texts, data sets, graphs, functions, and many more
objects of different types. This section covers the most important ones we will frequently encounter
in the remainder of this book.

1.2.1. Basic Calculations and Objects

We have already observed R doing some basic arithmetic calculations. From Script 1.1
(R-as-a-Calculator.R), the general approach of R should be self-explanatory. Fundamen-
tal operators include +, -, *, / for the respective arithmetic operations and parentheses ( and ) that
work as expected. The symbol ^ indicates taking powers, for example 32 is 3^2 in R.

We already used the R function sqrt to take a square root of a number. Table 1.1 lists other
important R functions that mostly work as expected. The reader is strongly encouraged to play
around to get used to them and to R more generally.

We will often want to store results of calculations to reuse them later. For this, we can work with
basic objects. An object has a name and a content. We can freely choose the name of an object given
certain rules – they have to start with a (small or capital) letter and include only letters, numbers,

Table 1.1. R functions for important arithmetic calculations

abs(v) Absolute value |v|
sqrt(v) Square root of v
exp(v) Exponential function ev

log(v) Natural logarithm ln (v)
log(v,b) Logarithm to base b: logb (v)
round(v,s) Round v to s digits
factorial(n) Factorial n!
choose(n,k) Binomial coefficient

(
n
k

)

http://www.r-bloggers.com
http://planetr.stderr.org
http://rseek.org
http://r4stats.com
http://stackoverflow.com
http://stats.stackexchange.com


12 1. Introduction

and some special characters such as “.” and “_”. R is case sensitive, so x and X are different object
names.

The content of an object is assigned using <- which is supposed to resemble an arrow and is
simply typed as the two characters “less than” and “minus”.6 In order to assign the value 5 to the
object x, type (the spaces are optional)
x <- 5
A new object with the name x is created and has the value 5. If there was an object with this name
before, its content is overwritten. From now on, we can use x in our calculations. Assigning a
value to an object will not produce any output. The simplest shortcut for immediately displaying
the result is to put the whole expression into parentheses as in (x <- 5). Script 1.3 (Objects.R)
shows simple examples using the three objects x, y, and z.

Output of Script 1.3: Objects.R

> # generate object x (no output):
> x <- 5

> # display x & x^2:
> x
[1] 5

> x^2
[1] 25

> # generate objects y&z with immediate display using ():
> (y <- 3)
[1] 3

> (z <- y^x)
[1] 243

A list of all currently defined object names can be obtained using ls(). In RStudio, it is also
shown in the “Workspace” window (top right by default). The command exists("name") checks
whether an object with the name “name” is defined and returns either TRUE or FALSE, see Section
1.2.3 for this type of “logical” object. Removing a previously defined object (for example x) from the
workspace is done using rm(x). All objects are removed with rm(list = ls()).

1.2.2. Vectors

For statistical calculations, we obviously need to work with data sets including many numbers
instead of scalars. The simplest way we can collect many numbers (or other types of informa-
tion) is called a vector in R terminology. To define a vector, we can collect different values using
c(value1,value2,...). All the operators and functions used above can be used for vectors.
Then they are applied to each of the elements separately.7 The examples in Script 1.4 (Vectors.R)
should help to understand the concept and use of vectors.

6Consistent with other programming languages, the assignment can also be done using x=5. R purists frown on this syntax.
It makes a lot of sense to distinguish the mathematical meaning of an equality sign from the assignment of a value to an
object. Mathematically, the equation x = x + 1 does not make any sense, but the assignment x<-x+1 does – it increases
the previous value of x by 1. We will stick to the standard R syntax using <- throughout this text.

7Note that also the multiplication of two vectors using the * operator performs element-wise multiplication. For vector and
matrix algebra, see Section 1.2.5 on matrices.



1.2. Objects in R 13

Output of Script 1.4: Vectors.R

> # Define a with immediate output through parantheses:
> (a <- c(1,2,3,4,5,6))
[1] 1 2 3 4 5 6

> (b <- a+1)
[1] 2 3 4 5 6 7

> (c <- a+b)
[1] 3 5 7 9 11 13

> (d <- b*c)
[1] 6 15 28 45 66 91

> sqrt(d)
[1] 2.449490 3.872983 5.291503 6.708204 8.124038 9.539392

There are also specific functions to create, manipulate and work with vectors. The most important
ones are shown in Table 1.2. Script 1.5 (Vector-Functions.R) provides examples to see them in
action. We will see in section 1.6 how to obtain descriptive statistics for vectors.

Table 1.2. R functions specifically for vectors

length(v) Number of elements in v
max(v), min(v) Largest/smallest value in v
sort(v) Sort the elements of vector v
sum(v),prod(v) Sum/product of the elements of v
numeric(n) Vector with n zeros
rep(z,n) Vector with n equal elements z
seq(t) Sequence from 1 to t: {1, 2, ...,t}, alternative: 1:t
seq(f,t) Sequence from f to t: {f,f+ 1, ...,t}, alternative: f:t
seq(f,t,s) Sequence from f to t in steps s: {f,f+ s, ...,t}



14 1. Introduction

Output of Script 1.5: Vector-Functions.R

> # Define vector
> (a <- c(7,2,6,9,4,1,3))
[1] 7 2 6 9 4 1 3

> # Basic functions:
> sort(a)
[1] 1 2 3 4 6 7 9

> length(a)
[1] 7

> min(a)
[1] 1

> max(a)
[1] 9

> sum(a)
[1] 32

> prod(a)
[1] 9072

> # Creating special vectors:
> numeric(20)
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> rep(1,20)
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

> seq(50)
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

[23] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
[45] 45 46 47 48 49 50

> 5:15
[1] 5 6 7 8 9 10 11 12 13 14 15

> seq(4,20,2)
[1] 4 6 8 10 12 14 16 18 20



1.2. Objects in R 15

Table 1.3. Logical Operators

x==y x is equal to y x!=y x is NOT equal to y
x<y x is less than y !b NOT b (i.e. b is FALSE)
x<=y x is less than or equal to y a|b Either a or b is TRUE (or both)
x>y x is greater than y a&b Both a and b are TRUE
x>=y x is greater than or equal to y

1.2.3. Special Types of Vectors

The contents of R vectors do not need to be numeric. A simple example of a different type are
character vectors. For handling them, the contents simply need to be enclosed in quotation marks:

> cities <- c("New York","Los Angeles","Chicago")

> cities
[1] "New York" "Los Angeles" "Chicago"

Another useful type are logical vectors. Each element can only take one of two values: TRUE or
FALSE. The easiest way to generate them is to state claims which are either true or false and let R
decide. Table 1.3 lists the main logical operators.

It should be noted that internally, FALSE is equal to 0 and TRUE is equal to 1 and we can do
calculations accordingly. Script 1.6 (Logical.R) demonstrates the most important features of logical
vectors and should be pretty self-explanatory.

Output of Script 1.6: Logical.R

> # Basic comparisons:
> 0 == 1
[1] FALSE

> 0 < 1
[1] TRUE

> # Logical vectors:
> ( a <- c(7,2,6,9,4,1,3) )
[1] 7 2 6 9 4 1 3

> ( b <- a<3 | a>=6 )
[1] TRUE TRUE TRUE TRUE FALSE TRUE FALSE

Many economic variables of interest have a qualitative rather than quantitative interpretation.
They only take a finite set of values and the outcomes don’t necessarily have a numerical meaning.
Instead, they represent qualitative information. Examples include gender, academic major, grade,
marital status, state, product type or brand. In some of these examples, the order of the outcomes
has a natural interpretation (such as the grades), in others, it does not (such as the state).

As a specific example, suppose we have asked our customers to rate our product on a scale between
1 (=“bad”), 2 (=“okay”), and 3 (=“good”). We have stored the answers of our ten respondents in
terms of the numbers 1,2, and 3 in a vector. We could work directly with these numbers, but often,
it is convenient to use so-called factors. One advantage is that we can attach labels to the outcomes.
Given a vector x with a finite set of values, a new factor xf can be generated using the command



16 1. Introduction

xf <- factor(x, labels=mylabels )

The vector mylabels includes the names of the outcomes, we could for example state xf <-
factor(x, labels=c("bad","okay","good") ). In this example, the outcomes are ordered,
so the labeling is not arbitrary. In cases like this, we should add the option ordered=TRUE. This is
done for a simple example with ten ratings in Script 1.7 (Factors.R).

Output of Script 1.7: Factors.R

> # Original ratings:
> x <- c(3,2,2,3,1,2,3,2,1,2)

> xf <- factor(x, labels=c("bad","okay","good"))

> x
[1] 3 2 2 3 1 2 3 2 1 2

> xf
[1] good okay okay good bad okay good okay bad okay

Levels: bad okay good

1.2.4. Naming and Indexing Vectors

The elements of a vector can be named which can increase the readability of the output. Given a
vector vec and a string vector namevec of the same length, the names are attached to the vector
elements using names(vec) <- namevec.

If we want to access a single element or a subset from a vector, we can work with indices. They
are written in square brackets next to the vector name. For example myvector[4] returns the 4th

element of myvector and myvector[6] <- 8 changes the 6th element to take the value 8. For
extracting more than one element, the indices can be provided as a vector themselves. If the vector
elements have names, we can also use those as indices like in myvector["elementname"].

Finally, logical vectors can also be used as indices. If a general vector vec and a logical vector b
have the same length, then vec[b] returns the elements of vec for which b has the value TRUE.

These features are demonstrated in Script 1.8 (Vector-Indices.R).

Output of Script 1.8: Vector-Indices.R

> # Create a vector "avgs":
> avgs <- c(.366, .358, .356, .349, .346)

> # Create a string vector of names:
> players <- c("Cobb","Hornsby","Jackson","O’Doul","Delahanty")

> # Assign names to vector and display vector:
> names(avgs) <- players

> avgs
Cobb Hornsby Jackson O’Doul Delahanty
0.366 0.358 0.356 0.349 0.346

> # Indices by number:
> avgs[2]
Hornsby
0.358



1.2. Objects in R 17

> avgs[1:4]
Cobb Hornsby Jackson O’Doul

0.366 0.358 0.356 0.349

> # Indices by name:
> avgs["Jackson"]
Jackson

0.356

> # Logical indices:
> avgs[ avgs>=0.35 ]

Cobb Hornsby Jackson
0.366 0.358 0.356

1.2.5. Matrices

Matrices are important tools for econometric analyses. Appendix D of Wooldridge (2019) introduces
the basic concepts of matrix algebra.8 R has a powerful matrix algebra system. Most often in applied
econometrics, matrices will be generated from an existing data set. We will come back to this below
and first look at three different ways to define a matrix object from scratch:

• matrix(vec,nrow=m) takes the numbers stored in vector vec and put them into a matrix
with m rows.

• rbind(r1,r2,...) takes the vectors r1,r2,... (which obviously should have the same
length) as the rows of a matrix.

• cbind(c1,c2,...) takes the vectors c1,c2,... (which obviously should have the same
length) as the columns of a matrix.

Script 1.9 (Matrices.R) first demonstrates how the same matrix can be created using all three
approaches. A close inspection of the output reveals the technical detail that the rows and columns
of matrices can have names. The functions rbind and cbind automatically assign the names of the
vectors as row and column names, respectively. As demonstrated in the output, we can manipulate
the names using the commands rownames and colnames. This has only cosmetic consequences
and does not affect our calculations.

Output of Script 1.9: Matrices.R

> # Generating matrix A from one vector with all values:
> v <- c(2,-4,-1,5,7,0)

> ( A <- matrix(v,nrow=2) )
[,1] [,2] [,3]

[1,] 2 -1 7
[2,] -4 5 0

> # Generating matrix A from two vectors corresponding to rows:
> row1 <- c(2,-1,7); row2 <- c(-4,5,0)

> ( A <- rbind(row1, row2) )
[,1] [,2] [,3]

row1 2 -1 7
row2 -4 5 0

8The strippped-down European and African textbook Wooldridge (2014) does not include the Appendix on matrix algebra.



18 1. Introduction

> # Generating matrix A from three vectors corresponding to columns:
> col1 <- c(2,-4); col2 <- c(-1,5); col3 <- c(7,0)

> ( A <- cbind(col1, col2, col3) )
col1 col2 col3

[1,] 2 -1 7
[2,] -4 5 0

> # Giving names to rows and columns:
> colnames(A) <- c("Alpha","Beta","Gamma")

> rownames(A) <- c("Aleph","Bet")

> A
Alpha Beta Gamma

Aleph 2 -1 7
Bet -4 5 0

> # Diaginal and identity matrices:
> diag( c(4,2,6) )

[,1] [,2] [,3]
[1,] 4 0 0
[2,] 0 2 0
[3,] 0 0 6

> diag( 3 )
[,1] [,2] [,3]

[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

> # Indexing for extracting elements (still using A from above):
> A[2,1]
[1] -4

> A[,2]
Aleph Bet

-1 5

> A[,c(1,3)]
Alpha Gamma

Aleph 2 7
Bet -4 0

We can also create special matrices as the examples in the output show:
• diag(vec) (where vec is a vector) creates a diagonal matrix with the elements on the main

diagonal given in vector vec.
• diag(n) (where n is a scalar) creates the n×n identity matrix.

If instead of a vector or scalar, a matrix M is given as an argument to the function diag, it will return
the main diagonal of M.

Finally, Script 1.9 (Matrices.R) shows how to access a subset of matrix elements. This is straight-
forward with indices that are given in brackets much like indices can be used for vectors as already
discussed. We can give a row and then a column index (or vectors of indices), separated by a comma:

• A[2,3] is the element in row 2, column 3
• A[2,c(1,2)] is a vector consisting of the elements in row 2, columns 1 and 2
• A[2,] is a vector consisting of the elements in row 2, all columns



1.2. Objects in R 19

Basic matrix algebra includes:

• Matrix addition using the operator + as long as the matrices have the same dimensions.
• The operator * does not do matrix multiplication but rather element-wise multiplication.
• Matrix multiplication is done with the somewhat clumsy operator %*% (yes, it consists of three

characters!) as long as the dimensions of the matrices match.
• Transpose of a matrix X: as t(X)
• Inverse of a matrix X: as solve(X)

The examples in Script 1.10 (Matrix-Operators.R) should help to understand the workings of
these basic operations. In order to see how the OLS estimator for the multiple regression model
can be calculated using matrix algebra, see Section 3.2. Standard R is capable of many more matrix
algebra methods. Even more advanced methods are available in the Matrix package.

Output of Script 1.10: Matrix-Operators.R

> A <- matrix( c(2,-4,-1,5,7,0), nrow=2)

> B <- matrix( c(2,1,0,3,-1,5), nrow=2)

> A
[,1] [,2] [,3]

[1,] 2 -1 7
[2,] -4 5 0

> B
[,1] [,2] [,3]

[1,] 2 0 -1
[2,] 1 3 5

> A*B
[,1] [,2] [,3]

[1,] 4 0 -7
[2,] -4 15 0

> # Transpose:
> (C <- t(B) )

[,1] [,2]
[1,] 2 1
[2,] 0 3
[3,] -1 5

> # Matrix multiplication:
> (D <- A %*% C )

[,1] [,2]
[1,] -3 34
[2,] -8 11

> # Inverse:
> solve(D)

[,1] [,2]
[1,] 0.0460251 -0.1422594
[2,] 0.0334728 -0.0125523



20 1. Introduction

1.2.6. Lists

In R, a list is a generic collection of objects. Unlike vectors, the components can have different
types. Each component can (and in the cases relevant for us will) be named. Lists can be generated
with a command like

mylist <- list( name1=component1, name2=component2, ... )

The names of the components are returned by names(mylist). A component can be addressed by
name using mylist$name. These features are demonstrated in Script 1.11 (Lists.R).

We will encounter special classes of lists in the form of analysis results: Commands for statistical
analyses often return a list that contains characters (like the calling command), vectors (like the
parameter estimates), and matrices (like variance-covariance matrices). But we’re getting ahead of
ourselves – we will encounter this for the first time in Section 1.8.4.

Output of Script 1.11: Lists.R

> # Generate a list object:
> mylist <- list( A=seq(8,36,4), this="that", idm = diag(3))

> # Print whole list:
> mylist
$A
[1] 8 12 16 20 24 28 32 36

$this
[1] "that"

$idm
[,1] [,2] [,3]

[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

> # Vector of names:
> names(mylist)
[1] "A" "this" "idm"

> # Print component "A":
> mylist$A
[1] 8 12 16 20 24 28 32 36



1.3. Data Frames and Data Files 21

1.3. Data Frames and Data Files

For R users, it is important to make the distinction between a data set (= data frame in R terminology)
which is a collection of variables on the same observational units and a data file which can include
several data sets and other objects.

1.3.1. Data Frames

A data frame is an object that collects several variables and can be thought of as a rectangular shape
with the rows representing the observational units and the columns representing the variables. As
such, it is similar to a matrix. For us, the most important difference to a matrix is that a data frame
can contain variables of different types (like numerical, logical, string and factor), whereas matrices
can only contain numerical values. Unlike some other software packages, we can work with several
data sets stored as data frame objects simultaneously.

Like a matrix, the rows can have names. Unlike a matrix, the columns always contain names
which represent the variables. We can define a data frame from scratch by using the command
data.frame or as.data.frame which transform inputs of different types (like a matrix) into a
data frame. Script 1.12 (Data-frames.R) presents a simple example where a matrix with row and
column names is created and transformed into a data frame called sales.

Output of Script 1.12: Data-frames.R

> # Define one x vector for all:
> year <- c(2008,2009,2010,2011,2012,2013)

> # Define a matrix of y values:
> product1<-c(0,3,6,9,7,8); product2<-c(1,2,3,5,9,6); product3<-c(2,4,4,2,3,2)

> sales_mat <- cbind(product1,product2,product3)

> rownames(sales_mat) <- year

> # The matrix looks like this:
> sales_mat

product1 product2 product3
2008 0 1 2
2009 3 2 4
2010 6 3 4
2011 9 5 2
2012 7 9 3
2013 8 6 2

> # Create a data frame and display it:
> sales <- as.data.frame(sales_mat)

> sales
product1 product2 product3

2008 0 1 2
2009 3 2 4
2010 6 3 4
2011 9 5 2
2012 7 9 3
2013 8 6 2



22 1. Introduction

The outputs of the matrix sales_mat and the data frame sales look exactly the same, but they
behave differently. In RStudio, the difference can be seen in the Workspace window (top right by
default). It reports the content of sales_mat to be a “6x3 double matrix” whereas the content
of sales is “6 obs. of 3 variables”.

We can address a single variable var of a data frame df using the matrix-like syntax df[,"var"]
or by stating df$var.9 This can be used for extracting the values of a variable but also for creating
new variables. Sometimes, it is convenient not to have to type the name of the data frame several
times within a command. The function with(df, some expression using vars of df) can
help. Yet another (but not recommended) method for conveniently working with data frames is to
attach them before doing several calculations using the variables stored in them. It is important
to detach them later. Script 1.13 (Data-frames-vars.R) demonstrates these features. A very
powerful way to manipulate data frames using the “tidyverse” approach is presented in Sections
1.5.4–1.5.6 below.

Output of Script 1.13: Data-frames-vars.R

> # Accessing a single variable:
> sales$product2
[1] 1 2 3 5 9 6

> # Generating a new variable in the data frame:
> sales$totalv1 <- sales$product1 + sales$product2 + sales$product3

> # The same but using "with":
> sales$totalv2 <- with(sales, product1+product2+product3)

> # The same but using "attach":
> attach(sales)

> sales$totalv3 <- product1+product2+product3

> detach(sales)

> # Result:
> sales

product1 product2 product3 totalv1 totalv2 totalv3
2008 0 1 2 3 3 3
2009 3 2 4 9 9 9
2010 6 3 4 13 13 13
2011 9 5 2 16 16 16
2012 7 9 3 19 19 19
2013 8 6 2 16 16 16

1.3.2. Subsets of Data

Sometimes, we do not want to work with a whole data set but only with a subset. This can
be easily achieved with the command subset(df,criterion), where criterion is a log-
ical expression which evaluates to TRUE for the rows which are to be selected. Script 1.14
(Data-frames-subsets.R) shows how to select a sub sample of the data frame sales from
above.

9Technically, a data frame is just a special class of a list of variables. This is the reason why the $ syntax is the same as for
general list, see Section 1.2.6



1.3. Data Frames and Data Files 23

Output of Script 1.14: Data-frames-subsets.R

> # Full data frame (from Data-frames.R, has to be run first)
> sales

product1 product2 product3
2008 0 1 2
2009 3 2 4
2010 6 3 4
2011 9 5 2
2012 7 9 3
2013 8 6 2

> # Subset: all years in which sales of product 3 were >=3
> subset(sales, product3>=3)

product1 product2 product3
2009 3 2 4
2010 6 3 4
2012 7 9 3

1.3.3. R Data Files

R has its own data file format. The usual extension of the file name is .RData. It can contain one or
more objects of arbitrary type (scalars, vectors, matrices, data frames, ...). If the objects v1,v2,...
are currently in the workspace, they can be saved to a file named mydata.RData by

save(v1,v2,..., file="mydata.RData")

Of course, the file name can also contain an absolute or relative path, see Section 1.1.4. To save all
currently defined objects, use save(list=ls(), file="mydata.RData") instead. All objects
stored in mydata.RData can be loaded into the workspace with

load("mydata.RData")

1.3.4. Basic Information on a Data Set

After loading a data set into a data frame, it is often useful to get a quick overview of the variables
it contains. There are several possibilities. Suppose we seek information on a data frame df.

• head(df) displays the first few rows of data.
• str(df) lists the structure, i.e. the variable names, variable types (numeric, string, logical,

factor,...), and the first few values.
• colMeans(df) reports the averages of all variables and summary(df) shows summary statis-

tics, see Section 1.6.4.
Script 1.15 (RData-Example.R) demonstrates these commands for the sales data frame gener-

ated in Script 1.12 (Data-frames.R). We save it in a file "oursalesdata.RData" (in the current
working directory), delete from memory, load it again, and produce a vector of variable averages.



24 1. Introduction

Output of Script 1.15: RData-Example.R

> # Note: "sales" is defined in Data-frames.R, so it has to be run first!
> # save data frame as RData file (in the current working directory)
> save(sales, file = "oursalesdata.RData")

> # remove data frame "sales" from memory
> rm(sales)

> # Does variable "sales" exist?
> exists("sales")
[1] FALSE

> # Load data set (in the current working directory):
> load("oursalesdata.RData")

> # Does variable "sales" exist?
> exists("sales")
[1] TRUE

> sales
product1 product2 product3 totalv1 totalv2 totalv3

2008 0 1 2 3 3 3
2009 3 2 4 9 9 9
2010 6 3 4 13 13 13
2011 9 5 2 16 16 16
2012 7 9 3 19 19 19
2013 8 6 2 16 16 16

> # averages of the variables:
> colMeans(sales)
product1 product2 product3 totalv1 totalv2 totalv3
5.500000 4.333333 2.833333 12.666667 12.666667 12.666667

1.3.5. Import and Export of Text Files

Probably all software packages that handle data are capable of working with data stored as text files.
This makes them a natural way to exchange data between different programs and users. Common
file name extensions for such data files are RAW, CSV or TXT.

The R command read.table provides possibilities for reading many flavors of text files which
are then stored as a data frame.10 The general command is

newdataframe <- read.table(filename, ...)

For the general rules on the file name, once again consult Section 1.1.4. The optional arguments that
can be added, separated by comma, include but are not limited to:

• header=TRUE: The text file includes the variable names as the first line
• sep=",": Instead of spaces or tabs, the columns are separated by a comma. Instead, an arbi-

trary other character can be given. sep=";" might be another relevant example of a separator.
• dec=",": Instead of a decimal point, a decimal comma is used. For example, some interna-

tional versions of MS Excel produce these sorts of text files.

10The commands read.csv and read.delim work very similarly but have different defaults for options like header and
sep.



1.3. Data Frames and Data Files 25

Figure 1.4. Examples of text data files

(a) sales.txt (b) sales.csv
year product1 product2 product3
2008 0 1 2
2009 3 2 4
2010 6 3 4
2011 9 5 2
2012 7 9 3
2013 8 6 2

2008,0,1,2
2009,3,2,4
2010,6,3,4
2011,9,5,2
2012,7,9,3
2013,8,6,2

• row.names=number: The values in column number number are used as row names instead
of variables.

RStudio provides a graphical user interface for importing text files which also allows to preview the
effects of changing the options: In the Workspace window, click on “Import Dataset”.

Figure 1.4 shows two flavors of a raw text file containing the same data. The file sales.txt
contains a header with the variable names. It can be imported with

mydata <- read.table("sales.txt", header=TRUE)

In file sales.csv, the columns are separated by a comma. The correct command for the import
would be
mydata <- read.table("sales.csv", sep=",")

Since this data file does not contain any variable names, they are set to their default values V1
through V4 in the resulting data frame mydata. They can be changed manually afterward, e.g. by
colnames(mydata) <- c("year","prod1","prod2","prod3").

Given some data in a data frame mydata, they can be exported to a text file using similar options
as for read.table using

write.table(mydata, file = "myfilename", ...)

1.3.6. Import and Export of Other Data Formats

Just as R, most statistics and spreadsheet programs come with their own file format to save and load
data. While its is basically always possible to exchange data via text files, it might be convenient
to be able to directly read or write data in the native format of some other software. There are
numerous packages that can deal with different data formats. A notable example is haven which is
very powerful for Stata, SPSS, and SAS files.

Since keeping up with all kinds of different data formats and packages can be tedious, the package
rio is very convenient for data import and export. It figures out the type of data format from the file
name extension, e.g. *.csv for CSV, *.dta for Stata, or *.sav for SPSS data sets – for a complete list of
supported formats, see help(rio). It then calls an appropriate package to do the actual importing
or exporting. The syntax is as straightforward as it gets:

rio::import("myfilename")
rio::export("myfilename")

Here, "myfilename" is the complete file name including the extension and the path, unless it is
located in the current working directory, see Section 1.1.4.



26 1. Introduction

1.3.7. Data Sets in the Examples

We will reproduce many of the examples from Wooldridge (2019). The example scripts in this book
use the convenient wooldridge package to load the data. But if you want to load your own data
sets from a different source, Script 1.16 (Example-Data.R) shows some examples how to load the
same data set in different ways.

The companion web site of the textbook provides the sample data sets in different formats, includ-
ing RData files. If you have an access code that came with the textbook, they can be downloaded
free of charge. The Stata data sets are also made available online at the “Instructional Stata Datasets
for econometrics” collection from Boston College, maintained by Christopher F. Baum.11

Output of Script 1.16: Example-Data.R

> # The data set is stored on the local computer in
> # ~/Documents/R/data/wooldridge/affairs.dta
>
> # Version 1: from package. make sure to install.packages(wooldridge)
> data(affairs, package=’wooldridge’)

> # Version 2: Adjust path
> affairs2 <- rio::import("~/Documents/R/data/wooldridge/affairs.dta")

> # Version 3: Change working directory
> setwd("~/Documents/R/data/wooldridge/")

> affairs3 <- rio::import("affairs.dta")

> # Version 4: directly load from internet
> affairs4 <- rio::import("http://fmwww.bc.edu/ec-p/data/wooldridge/affairs.dta")

> # Compare, e.g. avg. value of naffairs:
> mean(affairs$naffairs)
[1] 1.455907

> mean(affairs2$naffairs)
[1] 1.455907

> mean(affairs3$naffairs)
[1] 1.455907

> mean(affairs4$naffairs)
[1] 1.455907

11The address is http://econpapers.repec.org/paper/bocbocins/.

http://econpapers.repec.org/paper/bocbocins/


1.4. Base Graphics 27

Figure 1.5. Examples of function plots using curve

(a) curve( x^2, -2, 2) (b) curve( dnorm(x), -3, 3)

−2 −1 0 1 2

0
1

2
3

4

x^
2

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

dn
or

m
(x

)

1.4. Base Graphics

R is a versatile tool for producing all kinds of graphs. We can only scratch the surface. In this section,
we discuss the overall base R approach for producing graphs and the most important general types
of graphs. Section 1.5 will introduce a different approach based on the ggplot2 package that has
become very popular recently. Some specific graphs used for descriptive statistics will be introduced
in Section 1.6.

1.4.1. Basic Graphs

Two-way graphs have an abscissa and an ordinate that typically represent two variables like x and
y. An obvious example is a function plot in which the function values y = f (x) are plotted against
x. In R, a function plot can be generated using the command

curve( function(x), xmin, xmax )

where function(x) is the function to be plotted in general R syntax involving x and xmin and
xmax are the limits for the x axis. For example, the command curve( x^2, -2, 2 ) generated
Figure 1.5(a) and curve( dnorm(x), -3, 3 ) produced Figure 1.5(b).12

If we have data or other points in two vectors x and y, we can easily generate scatter plots, line
plots or similar two-way graphs. The command plot is a generic plotting command that is capable
of these types of graphs and more. We will see some of the more specialized uses later on. We define
two short vectors and simply call plot with the vectors as arguments:

x <- c(1,3,4,7,8,9)
y <- c(0,3,6,9,7,8)
plot(x,y)

This will generate Figure 1.6(a). The most fundamental option of these plots is the type. It can take
the values "p" (the default), "l", "b", "o", "s", "h", and more. The resulting plots are shown in
Figure 1.6.
12The function dnorm(x) is the standard normal density, see Section 1.7.



28 1. Introduction

Figure 1.6. Examples of point and line plots using plot(x,y)

(a) plot(x,y) (b) plot(x,y,type="l")

2 4 6 8

0
2

4
6

8

y

2 4 6 8
0

2
4

6
8

y

(c) plot(x,y,type="b") (d) plot(x,y,type="o")

2 4 6 8

0
2

4
6

8

y

2 4 6 8

0
2

4
6

8

y

(e) plot(x,y,type="s") (f) plot(x,y,type="h")

2 4 6 8

0
2

4
6

8

y

2 4 6 8

0
2

4
6

8

y



1.4. Base Graphics 29

1.4.2. Customizing Graphs with Options

These plots as well as those created by curve can be adjusted very flexibly. A few examples:
• The point symbol can be changed using the option pch. It can take a single character such as
pch="B" where this character is used as a marker. Or it can take predefined values which are
chosen by number such as pch=3. Here is a list of the symbols associated with numbers 1–18:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

• The line type can be changed using the option lty. It can take (among other specifications)
the values 1 through 6:

1 2 3 4 5 6

• The size of the points and texts can be changed using the option cex. It represents a factor
(standard: cex=1).

• The width of the lines can be changed using the option lwd. It represents a factor (standard:
lwd=1).

• The color of the lines and symbols can be changed using the option col=value. It can be
specified in several ways:

– By name: A list of available color names can be obtained by colors() and will include
several hundred color names from the obvious "black", "blue", "green" or "red" to
more exotic ones like "papayawhip".

– By a number corresponding to a list of colors (palette) that can be adjusted.
– Gray scale: gray(level) with level=0 indicating black and level=1 indicating white.
– By RGB values with a string of the form "#RRGGBB" where each of the pairs RR, GG, BB

consist of two hexadecimal digits.13 This is useful for fine-tuning colors.
– Using the function rgb(red, green, blue) where the arguments represent the RBG

values, normalized between 0 and 1 by default. They can also be normalized e.g. to be
between 0 and 255 with the additional option maxColorValue = 255.

– The rgb function can also define transparency with the additional option alpha=value,
where alpha=0 means fully transparent (i.e. invisible) and alpha=1 means fully opaque.

• A main title and a subtitle can be added using main="My Title" and sub="My Subtitle".
• The horizontal and vertical axis can be labeled using xlab="My x axis label" and
ylab="My y axis label".

• The limits of the horizontal and the vertical axis can be chosen using xlim=c(min,max) and
ylim=c(min,max), respectively.

• The axis labels can be set to be parallel to the axis (las=0), horizontal (las=1), perpendicular
to the axis (las=2), or vertical (las=3).

Some additional options should be set before the graph is created using the command
par(option1=value1, option2=value2, ...). For some options, this is the only pos-
sibility. An important example is the margin around the plotting area. It can be set either in inches
using mai=c(bottom, left, top, right) or in lines of usual text using mar=c(bottom,
left, top, right). In both cases, they are simply set to a numerical vector with four elements.
Another example is the possibility to easily put several plots below or next to each other in one
graph using the options mfcol or mfrow.

13The RGB color model defines colors as a mix of the components red, green, and blue.



30 1. Introduction

Figure 1.7. Overlayed plots

(a) Functions (b) Plots with added elements

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

2 4 6 8

0
2

4
6

8

Example for an Outlier

x

y

outlier

1.4.3. Overlaying Several Plots

Often, we want to plot more than one function or set of variables. We can use several curve and/or
plot commands sequentially. By default, each plot replaces the previous one. To avoid this and
overlay the plots instead, use the add=TRUE option. Here is an example that also demonstrates the
options lwd and lty.14 Its result is shown in Figure 1.7(a):

curve( dnorm(x,0,1), -10, 10, lwd=1, lty=1 )
curve( dnorm(x,0,2),add=TRUE, lwd=2, lty=2 )
curve( dnorm(x,0,3),add=TRUE, lwd=3, lty=3 )

There are also useful specialized commands for adding elements to an existing graph each of
which can be tweaked with the same formatting options presented above:

• points(x,y,...) and lines(x,y,...) add point and line plots much like plot with the
add=TRUE option.

• text(x,y,"mytext",...) adds text to coordinates (x,y). The option pos=number posi-
tions the text below, to the left of, above or to the right of the specified coordinates if pos is set
to 1, 2, 3, or 4, respectively.

• abline(a=value,b=value,...) adds a line with intercept a and slope b.
• abline(h=value(s),...) adds one or more horizontal line(s) at position h (which can be

a vector).
• abline(v=value(s),...) adds one or more vertical line(s) at position v (which can be a

vector).
• arrows(x0, y0, x1, y1, ...) adds an arrow from point x0,y0 to point x1,y1.

An example is shown in Script 1.17 (Plot-Overlays.R). It combines different plotting commands
and options to generate Figure 1.7(b).

14The function dnorm(x,0,2) is the normal density with mean 0 and standard deviation 2, see Section 1.7.



1.4. Base Graphics 31

Figure 1.8. Graph generated by matplot

1

1

1

1

1
1

2008 2009 2010 2011 2012 2013
0

2
4

6
8

year

sa
le

s
2

2
2

2

2

2

3

3 3

3
3

3

Script 1.17: Plot-Overlays.R
plot(x,y, main="Example for an Outlier")
points(8,1)
abline(a=0.31,b=0.97,lty=2,lwd=2)
text(7,2,"outlier",pos=3)
arrows(7,2,8,1,length=0.15)

A convenient alternative for specifying the plots separately is to use the command matplot. It
expects several y variables as a matrix and x either as a vector or a matrix with the same dimen-
sions. We can use all formatting options discussed above which can be set as vectors. Script 1.18
(Plot-Matplot.R) demonstrates this command. The result is shown in Figure 1.8.

Script 1.18: Plot-Matplot.R
# Define one x vector for all:
year <- c(2008,2009,2010,2011,2012,2013)
# Define a matrix of y values:
product1 <- c(0,3,6,9,7,8)
product2 <- c(1,2,3,5,9,6)
product3 <- c(2,4,4,2,3,2)
sales <- cbind(product1,product2,product3)
# plot
matplot(year,sales, type="b", lwd=c(1,2,3), col="black" )

1.4.4. Legends

If we combine several plots into one, it is often useful to add a legend to a graph. The command is
legend(position,labels,formats,...) where

• position determines the placement. It can be a set of x and y coordinates but usually it is
more convenient to use one of the self-explanatory keywords "bottomright", "bottom",
"bottomleft", "left", "topleft", "top", "topright", "right", or "center".

• labels is a vector of strings that act as labels for the legend. It should be specified like
c("first label","second label",...).



32 1. Introduction

Figure 1.9. Using legends

(a) Simple legend (b) Legend including symbols

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
(x

, 0
, 1

)

sigma=1
sigma=2
sigma=3

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
(x

, 0
, 1

)

σ = 1
σ = 2
σ = 3

f(x) =
1

2πσ
e− x2

2σ2

• formats is supposed to reproduce the line and marker styles used in the plot. We can use the
same options listed in Section 1.4.2 like pch and lty.

Script 1.19 (Plot-Legend.R) adds a legend to the plot of the different density functions. The result
can be seen in Figure 1.9(a).

Script 1.19: Plot-Legend.R
curve( dnorm(x,0,1), -10, 10, lwd=1, lty=1)
curve( dnorm(x,0,2),add=TRUE, lwd=2, lty=2)
curve( dnorm(x,0,3),add=TRUE, lwd=3, lty=3)
# Add the legend
legend("topright",c("sigma=1","sigma=2","sigma=3"), lwd=1:3, lty=1:3)

In the legend, but also everywhere within a graph (title, axis labels, texts, ...) we can also use
Greek letters, equations, and similar features in a relatively straightforward way. This is done using
the command expression(specific syntax). A complete list of that syntax can be found in
the help files somewhat hidden under plotmath. Instead of trying to reproduce this list, we just
give an example in Script 1.20 (Plot-Legend2.R). Figure 1.9(b) shows the result.

Script 1.20: Plot-Legend2.R
curve( dnorm(x,0,1), -10, 10, lwd=1, lty=1)
curve( dnorm(x,0,2),add=TRUE, lwd=2, lty=2)
curve( dnorm(x,0,3),add=TRUE, lwd=3, lty=3)
# Add the legend with greek sigma
legend("topleft",expression(sigma==1,sigma==2,sigma==3),lwd=1:3,lty=1:3)
# Add the text with the formula, centered at x=6 and y=0.3
text(6,.3,

expression(f(x)==frac(1,sqrt(2*pi)*sigma)*e^{-frac(x^2,2*sigma^2)}))



1.4. Base Graphics 33

1.4.5. Exporting to a File

By default, a graph generated in one of the ways we discussed above will be displayed in its own
window. For example, RStudio has a Plots window (bottom right by default). This window also has
an Export button which allows to save the generated plot in different graphics formats. Obviously, it
is inconvenient to export graphics manually this way when we are working with scripts, especially if
one script generates several figures. Not surprisingly, R offers the possibility to export the generated
plots automatically using specific commands within the script.

Among the different graphics formats, the PNG (Portable Network Graphics) format is very useful
for saving plots to use them in a word processor and similar programs. For LaTeX users, PS, EPS,
and SVG files are available and PDF is very useful. Exporting works in three steps:

1. Start the graphics file and give some options:
• For a PNG file, the command is:
png(filename="myfilename.png",width=value,height=value,...)
For the filename, the general rules for working with paths and the working directory
apply, see Section 1.1.4. The width and height are specified in pixels and both are equal
to 480 by default. The same approach works for BMP, JPEG and TIFF formats accordingly.

• For a PDF file, the command is:
pdf(file = "myfilename.pdf", width=value, height=value,...)
The difference is that the file name is specified as file and that the width and height
are specified in inches and are both are equal to 7 by default.

2. Create the graph using the commands we looked at above. If we want to set options using par,
do that first. We can use as many lines of code as we like to generate complicated overlayed
plots.

3. Tell R that we are finished with the current graphics file by using the command dev.off().
This is important and will create problems with the file if forgotten.

To create a 4× 3 inch PDF file distributions.pdf in the sub-directory figures of the working
directory (which must exist), the code to exactly reproduce Figure 1.7(a) including the specified
margins would be

pdf(file = "figures/distributions.pdf"), width = 4, height = 3)
par(mar=c(2,2,0,0))
curve( dnorm(x,0,1), -10, 10)
curve( dnorm(x,0,2),add=TRUE, col="blue" )
curve( dnorm(x,0,3),add=TRUE, col="red" )
dev.off()



34 1. Introduction

1.5. Data Manipulation and Visualization: The Tidyverse

In this book, like in most econometrics textbooks, example data sets come in the perfect shape for our
analyses. In the real world, things are less pretty. Before we can use the econometric tools discussed
in the next chapters, real data have to be compiled, merged, cleaned, recoded, and the like. Data
visualization provides important insights into the structure and relations in the data.

This section describes a consistent and recently extremely popular approach for data manipulation
and visualization implemented in a set of packages which together is called the “tidyverse”.15 These
packages share a common philosophy and work together seamlessly. These topics are not required
at all for the remainder of this book, but they are important for real life. And for legitimately adding
R skills to your CV, you nowadays need some idea of the tidyverse. We can obviously only scratch
the surface. For a more detailed and careful introduction, Wickham and Grolemund (2016) is highly
recommended.16

1.5.1. Data visualization: ggplot Basics

We have covered base graphics in Section 1.4. The package ggplot2 provides an alternative ap-
proach that – after investing some effort to understand and appreciate it – is very convenient for
quickly generating meaningful plots and for producing publication-ready graphs. The New York
Times for example generates their visualizations with ggplot2.

The critical starting point for a ggplot2 graphic is a “tidy” data frame. This means that the units
of observation are in the rows and variables that we want to graphically represent are in columns.
For now, we assume that such a data frame is readily available. In Sections 1.5.4–1.5.6, we introduce
the tidyverse way to generate one from arbitrary raw data.

As an example, consider the data set mpg which is part of the ggplot2 package and is therefore
immediately available after loading the package with library(ggplot2). It contains information
on 224 car models from 1999 or 2008, for details, see help(mpg). Script 1.21 (mpg-data.R) shows
the first rows of data. Our goal is to visualize the relationship between displacement (displ) and
highway mileage (hwy).

Output of Script 1.21: mpg-data.R

> # load package
> library(ggplot2)

> # First rows of data of data set mpg:
> head(mpg)
# A tibble: 6 x 11
manufacturer model displ year cyl trans drv cty hwy fl
<chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr>

1 audi a4 1.8 1999 4 auto... f 18 29 p
2 audi a4 1.8 1999 4 manu... f 21 29 p
3 audi a4 2 2008 4 manu... f 20 31 p
4 audi a4 2 2008 4 auto... f 21 30 p
5 audi a4 2.8 1999 6 auto... f 16 26 p
6 audi a4 2.8 1999 6 manu... f 18 26 p
# ... with 1 more variable: class <chr>

15Previously, the “tidyverse” used to be known as the “hadleyverse” after the most important developer in this area, Hadley
Wickham. In 2016, he humbly suggested to replace this term with “tidyverse”. By the way: Hadley Wickham is also a
great presenter and teacher. Feel encouraged to search for his name on YouTube and other channels.

16The book can also be read at http://r4ds.had.co.nz/.

http://r4ds.had.co.nz/


1.5. Data Manipulation and Visualization: The Tidyverse 35

The “gg” in ggplot2 refers to a “grammar of graphics”. In this philosophy, a graph consists of
one or more geometric objects (or geoms). These could be points, lines, or other objects. They are
added to a graph with a function specific to the type. For example:

• geom_point(): points
• geom_line(): lines
• geom_smooth(): nonparametric regression
• geom_area(): ribbon
• geom_boxplot(): boxplot

There are many other geoms, including special ones for maps and other specific needs. These objects
have visual features like the position on the x and y axes, that are given as variables in the data frame.
Also features like the color, shape or size of points can – instead of setting them globally – be linked
to variables in the data set. These connections are called aesthetic mappings and are defined in a
function aes(feature=variable, ...). For example:

• x=...: Variable to map to x axis
• y=...: Variable to map to y axis
• color=...: Variable to map to the color (e.g. of the point)17

• shape=...: Variable to map to the shape (e.g. of the point)
A ggplot2 graph is always initialized with a call of ggplot(). The geoms a added with a +. As a

basic example, we would like to use the data set mpg and map displ on the x axis and hwy on the
y axis. The basic syntax is shown in Script 1.22 (mpg-scatter.R) and the result in Figure 1.10(a).

Script 1.22: mpg-scatter.R
# load package
library(ggplot2)

# Generate ggplot2 graph:
ggplot() + geom_point( data=mpg, mapping=aes(x=displ, y=hwy) )

Let us add a second “geom” to the graph. Nonparametric regression is a topic not covered in
Wooldridge (2019) or this book, but it is easy to implement with ggplot2. We will not go into
details here but simply use these tools for visualizing the relationship between two variables. For
more details, see for example Pagan and Ullah (2008).

Figure 1.10(b) shows the same scatter plot as before with a nonparametric regression function
added. It represents something like the average of hwy given displ is close to the respective value
on the axis. The grey ribbon around the line visualizes the uncertainty and is relatively wide for
very high displ values where the data are scarce. For most of the relevant area, there seems to be
a clearly negative relation between displacement and highway mileage.

Figure 1.10(b) can be generated by simply adding the appropriate geom to the scatter plot with
+geom_smooth(...):

ggplot() +
geom_point( data=mpg, mapping=aes(x=displ, y=hwy) ) +
geom_smooth(data=mpg, mapping=aes(x=displ, y=hwy) )

Note that the code for the graph spans three lines which makes it easier to read. We just add the +
to the end of the previous line to explicitly state that we’re not finished yet.

17Since Hadley Wickham is from New Zealand, the official name actually is colour, but the American version is accepted
synonymously.



36 1. Introduction

Figure 1.10. Simple graphs created by ggplot2

(a) Scatterplot (b) Scatterplot and nonlinear regression

20

30

40

2 3 4 5 6 7
displ

hw
y

20

30

40

2 3 4 5 6 7
displ

hw
y

The repetitive “data=mpg, mapping=aes(x=displ, y=hwy)” in both geoms is a little annoy-
ing since it makes our code longer than needed and error-prone: if we later change data sets or
variables, we have to do it consistently in several places. Fortunately, ggplot2 has a solution: De-
fine data and mapping in the initial call of the ggplot() function and it will be valid for all geoms
in this graph. We can also leave out the argument names if we comply with the order of the argu-
ments. Likewise, if we don’t name the arguments of aes, the first argument is the mapping to the
x- and the second to the y axis. This gives a more concise code and is the style most users prefer, so
you will find this style a lot on the internet. It is implemented in Script 1.23 (mpg-regr.R) which
actually generated Figure 1.10(b):

Script 1.23: mpg-regr.R
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth()

1.5.2. Colors and Shapes in ggplot Graphs

We can simply change the color of all points or the regression curve similar to how it is described
for base graphics in Section 1.4.2. We simply set the option color of the respective geom using one
of the specifications described there. Script 1.24 (mpg-color1.R) draws the points in a medium
gray (color=gray(0.5)) and the regression line in black (color="black"). The result is shown
in Figure 1.11(a).

Script 1.24: mpg-color1.R
ggplot(mpg, aes(displ, hwy)) +
geom_point(color=gray(0.5)) +
geom_smooth(color="black")

More interestingly, we can use different colors for groups of points defined by a third variable
to explore and visualize relationships. For example, we can distinguish the points by the variable
class. In ggplot2 terminology, we add a third aesthetic mapping from a variable class to visual



1.5. Data Manipulation and Visualization: The Tidyverse 37

Figure 1.11. Color and shapes in ggplot2 I

(a) Result of Script 1.24 (mpg-color1.R)

20

30

40

2 3 4 5 6 7
displ

hw
y

(b) Result of Script 1.25 (mpg-color2.R)

20

30

40

2 3 4 5 6 7
displ

hw
y

class

2seater

compact

midsize

minivan

pickup

subcompact

suv

feature color (besides the mappings to the x and y axes). Consistent with the logic, we therefore
define this mapping in the aes function. Script 1.25 (mpg-color2.R) implements this by setting
aes(color=class) as an option to geom_point. R automatically assigns a color to each value of
class. Optionally, we can choose the set of colors by adding (again with +) a scale specification.
We add +scale_color_grey() to request different shades of gray. The result is shown in Figure
1.11(b). Note that the legend is added automatically. There are many other options to choose the
color scale including scale_color_manual() for explicitly choosing the colors. If a numeric
variable is mapped to color, a continuous color scale is used.

Script 1.25: mpg-color2.R
ggplot(mpg, aes(displ, hwy)) +

geom_point( aes(color=class) ) +
geom_smooth(color="black") +
scale_color_grey()

A closer look at Figure 1.11(b) reveals that distinguishing seven values by color is hard, especially
if we restrict ourselves to gray scales. In addition (or as an alternative), we can use different point
shapes. This corresponds to a fourth mapping – in this case to the visual feature shape. We could



38 1. Introduction

Figure 1.12. Color and shapes in ggplot2 II

(a) Result of Script 1.26 (mpg-color3.R)

20

30

40

2 3 4 5 6 7
displ

hw
y

class

2seater

compact

midsize

minivan

pickup

subcompact

suv

(b) Result of Script 1.27 (mpg-color4.R)

20

30

40

2 3 4 5 6 7
displ

hw
y

class

2seater

compact

midsize

minivan

pickup

subcompact

suv

also map different variables to color and shape, but this would likely be too much information
squeezed into one graph. So Script 1.26 (mpg-color3.R) maps class to both color and shape.
We choose shapes number 1–7 with the additional +scale_shape_manual(values=1:7).18

The result is shown in Figure 1.12(a). Now we can more clearly see that there are two distinct
types of cars with very high displacement: gas guzzlers of type suv and pickup have a low mileage
and cars of type 2seater have a relatively high mileage. These turn out to be five versions of the
Chevrolet Corvette.

Script 1.26: mpg-color3.R
ggplot(mpg, aes(displ, hwy)) +
geom_point( aes(color=class, shape=class) ) +
geom_smooth(color="black") +
scale_color_grey() +
scale_shape_manual(values=1:7)

Let’s once again look at the aesthetic mappings: In Script 1.26 (mpg-color3.R), x and y are
mapped within the ggplot() call and are valid for all geoms, whereas shape and color are active
18With more than 6 values, +scale_shape_manual(values=...) is required.



1.5. Data Manipulation and Visualization: The Tidyverse 39

only within geom_point(). We can instead specify them within the ggplot() call to make them
valid for all geoms as it’s done in Script 1.27 (mpg-color4.R). The resulting graph is shown in
Figure 1.12(b). Now, also the smoothing is done by class separately and indicated by color. The
mapping to shape is ignored by geom_smooth() because it makes no sense for the regression
function. This graph appears to be overloaded with information – if we find this type of graph
useful, we might want to consider aggregating the car classes into three or four broader types.19

Script 1.27: mpg-color4.R
ggplot(mpg, aes(displ, hwy, color=class, shape=class)) +

geom_point() +
geom_smooth(se=FALSE) +
scale_color_grey() +
scale_shape_manual(values=1:7)

1.5.3. Fine Tuning of ggplot Graphs

All aspects of the ggplot2 graphs can be adjusted. Instead of trying to make a comprehensive
list, let’s give some examples. For details, refer to to Wickham (2009), Chang (2012), or Wickham
and Grolemund (2016) which is available online at http://r4ds.had.co.nz/. There is also a
very useful “cheat sheet” available at https://www.rstudio.com/resources/cheatsheets/
along with other cheat sheets. They can also be reached from RStudio under Help→ Cheatsheets.

Script 1.28 (mpg-advanced.R) repeats the previous graph and chooses a light theme with white
background using theme_light(). It also sets various titles and labels which should be pretty
self-explanatory. Finally, we manually set the limits of the axes with coord_cartesian() and put
the legend at a specific place inside the graph with themelegend.position = c(0.15, 0.3).

At the end of 1.28 (mpg-advanced.R), the graph is saved to a PNG graphics file with the function
ggsave(...) with an explicitly chosen size (in inches). The file my_ggplot.png will be stored in
the current working directory since no path is added. For a discussion of the working directory and
paths, refer to Section 1.1.4. The graphics file type is determined by the file name extension. It can
also be PDF, JPG, and others. The graph is shown in Figure 1.13.

Script 1.28: mpg-advanced.R
ggplot(mpg, aes(displ, hwy, color=class, shape=class)) +

geom_point() +
geom_smooth(se=FALSE) +
scale_color_grey() +
scale_shape_manual(values=1:7) +
theme_light() +
labs(title="Displacement vs. Mileage",

subtitle="Model years 1988 - 2008",
caption="Source: EPA through the ggplot2 package",
x = "Displacement [liters]",
y = "Miles/Gallon (Highway)",
color="Car type",
shape="Car type"
) +

coord_cartesian(xlim=c(0,7), ylim=c(0,45)) +
theme(legend.position = c(0.15, 0.3))

ggsave("my_ggplot.png", width = 7, height = 5)

19We turn of the gray error bands for the smooths to avoid an even messier graph in Script 1.27 (mpg-color4.R) with the
option se=FALSE of geom_smooth.

http://r4ds.had.co.nz/
https://www.rstudio.com/resources/cheatsheets/


40 1. Introduction

Figure 1.13. Fine tuning of ggplot2 graphs

0

10

20

30

40

0 2 4 6
Displacement [liters]

M
ile

s/
G

al
lo

n 
(H

ig
hw

ay
)

Car type

2seater

compact

midsize

minivan

pickup

subcompact

suv

Model years 1988 − 2008

Displacement vs. Mileage

Source: EPA through the ggplot2 package



1.5. Data Manipulation and Visualization: The Tidyverse 41

1.5.4. Basic Data Manipulation with dplyr

We already know how to manipulate data with basic R tools. The package dplyr is part of the
tidyverse and offers a convenient approach to deal with data stored in data frames.20 It is highly
efficient for anything from simple to complex data handling tasks. Again, we can only scratch the
surface here and refer to Wickham and Grolemund (2016) for more details.

Let’s use some real-world data that we need to manipulate. The package WDI allows to search and
download data from the World Bank’s World Development Indicators.21 Our goal here will be to look
at the development of female life expectancy in the US. WDI data series have rather cryptic names.
The command WDIsearch("life exp") reveals that our series is called SP.DYN.LE00.FE.IN.
Script 1.29 (wdi-data.R) downloads the data for the years 1960–2014 using the command WDI and
displays the first and last 6 rows. We have a total number of 14520 rows corresponding to different
country groups (like Arab World) and countries (like Zimbabwe) and year.

Output of Script 1.29: wdi-data.R

> # packages: WDI for raw data, dplyr for manipulation
> library(WDI);

> wdi_raw <- WDI(indicator=c("SP.DYN.LE00.FE.IN"), start = 1960, end = 2014)

> head(wdi_raw)
iso2c country SP.DYN.LE00.FE.IN year

1 1A Arab World 72.97131 2014
2 1A Arab World 72.79686 2013
3 1A Arab World 72.62239 2012
4 1A Arab World 72.44600 2011
5 1A Arab World 72.26116 2010
6 1A Arab World 72.05996 2009

> tail(wdi_raw)
iso2c country SP.DYN.LE00.FE.IN year

14515 ZW Zimbabwe 56.952 1965
14516 ZW Zimbabwe 56.521 1964
14517 ZW Zimbabwe 56.071 1963
14518 ZW Zimbabwe 55.609 1962
14519 ZW Zimbabwe 55.141 1961
14520 ZW Zimbabwe 54.672 1960

We would like to extract the relevant variables, filter out only the data for the US, rename the
variable of interest, sort by year in an increasing order, and generate a new variable using the dplyr
tools. The function names are verbs and quite intuitive to understand. They are focused on data
frames and all have the same structure: The first argument is always a data frame and the result is
one, too. So the general structure of dplyr commands is

new_data_frame <- some_verb(old_data_frame, details)

Script 1.30 (wdi-manipulation.R) performs a number of manipulations to the data set. The
first step is to filter the rows for the US. The function to do this is filter. We supply our raw data
and a condition and get the filtered data frame as a result. We would like to get rid of the ugly
variable name SP.DYN.LE00.FE.IN and rename it to LE_fem. In the tidyverse, this is done with

20Actually, the package works with an updated version of a data frame called tibble, but that does not make any relevant
difference at this point.

21Details and instructions for the WDI package can be found at https://github.com/vincentarelbundock/WDI.

https://github.com/vincentarelbundock/WDI


42 1. Introduction

rename(old_data, new_var=old_var). The next step is to select the relevant variables year
and LE_fem. The appropriate verb is select and we just list the chosen variables in the preferred
order. Finally, we order the data frame by year with the function arrange.

In this script, we repeatedly overwrite the data frame ourdata in each step. Section 1.5.5 intro-
duces a more elegant way to achieve the same result. We print the first and last six rows of data
after all the manipulation steps. They are in exactly the right shape for most data analysis tasks or
to produce a plot with ggplot. This is done in the last step of the script and should be familiar by
now. The result is printed as Figure 1.14.

Output of Script 1.30: wdi-manipulation.R

> library(dplyr)

> # filter: only US data
> ourdata <- filter(wdi_raw, iso2c=="US")

> # rename lifeexpectancy variable
> ourdata <- rename(ourdata, LE_fem=SP.DYN.LE00.FE.IN)

> # select relevant variables
> ourdata <- select(ourdata, year, LE_fem)

> # order by year (increasing)
> ourdata <- arrange(ourdata, year)

> # Head and tail of data
> head(ourdata)
year LE_fem

1 1960 73.1
2 1961 73.6
3 1962 73.5
4 1963 73.4
5 1964 73.7
6 1965 73.8

> tail(ourdata)
year LE_fem

50 2009 80.9
51 2010 81.0
52 2011 81.1
53 2012 81.2
54 2013 81.2
55 2014 81.3

> # Graph
> library(ggplot2)

> ggplot(ourdata, aes(year, LE_fem)) +
> geom_line() +
> theme_light() +
> labs(title="Life expectancy of females in the US",
> subtitle="World Bank: World Development Indicators",
> x = "Year",
> y = "Life expectancy [years]"
> )



1.5. Data Manipulation and Visualization: The Tidyverse 43

Figure 1.14. Data manipulation in the tidyverse: Example 1

75.0

77.5

80.0

1960 1980 2000
Year

Li
fe

 e
xp

ec
ta

nc
y 

[y
ea

rs
]

World Bank: World Development Indicators

Life expectancy of females in the US

1.5.5. Pipes

Pipes are an important concept in the tidyverse. They are actually introduced in the package
magrittr which is automatically loaded with dplyr. The goal is to replace the repeated over-
writing of the data frame in Script 1.30 (wdi-manipulation.R) with something more concise, less
error-prone, and computationally more efficient.

To understand the concept of the pipe, consider a somewhat nonsensical example of sequential
computations: Our goal is to calculate exp(log10(6154)), rounded to two digits. A one-liner with
nested function call would be

round(exp(log(6154,10)),2)

While this produces the correct result 44.22, it is somewhat hard to write, read, and debug. It is
especially difficult to see where the parentheses to which function are closed and which argument
goes where. For more realistic problems, we would need many more nested function calls and this
approach would completely break down. An alternative would be to sequentially do the calculations
and store the results in a temporary variable:

temp <- log(6154, 10)
temp <- exp(temp)
temp <- round(temp, 2)
temp

This is easier to read since we can clearly see the order of operations and which functions the
arguments belong to. A similar approach was taken in Script 1.30 (wdi-manipulation.R): The
data frame ourdata is overwritten over and over again. However, this is far from optimal – typing
ourdata so many times is tedious and error-prone and the computational costs are unnecessarily
high.

This is where the pipe comes into play. It is an operator that is written as %>%.22 It takes the
expression to the left hand side and uses it as the first argument for the function on the right hand

22Conveniently, in RStudio, the pipe can be written with the combination Ctrl + Shift ⇑ + M on a Windows machine
and Command + Shift ⇑ + M on a Mac.



44 1. Introduction

side. Therefore, 25 %>% sqrt() is the same as sqrt(25). Nesting is easily done, so our toy
example can be translated as
log(6154,10) %>%
exp() %>%
round(2)

First, log(6154,10) is evaluated. Its result is “piped” into the exp() function on the right hand
side. The next pipe takes this result as the first argument to the round function on the right hand
side. So we can read the pipe as and then: Calculate the log and then take the exponent and then do
the rounding to two digits. This version of the code is quite easily readable.

This approach can perfectly be used with dplyr, since these functions expect the old data frame
as the first input and return the new data frame. Script 1.31 (wdi-pipes.R) performs exactly the
same computations as 1.30 (wdi-manipulation.R) but uses pipes. Once we understood the idea,
this code is more convenient and powerful. The code can directly be read as

• Take the data set wdi_raw and then ...
• filter the US data and then ...
• rename the variable and then ...
• select the variables and then ...
• order by year.

Script 1.31: wdi-pipes.R
library(dplyr)
# All manipulations with pipes:
ourdata <- wdi_raw %>%
filter(iso2c=="US") %>%
rename(LE_fem=SP.DYN.LE00.FE.IN) %>%
select(year, LE_fem) %>%
arrange(year)

1.5.6. More Advanced Data Manipulation

After having mastered the pipe, we are ready for some more data manipulation with dplyr. Our
goal is to average female life expectancy over groups of countries and produce a result like Figure
1.15.

The first step is to classify the countries into income groups. The WDI package includes country-
specific data in a matrix named WDI_data$country including an income classification in column
income. Script 1.32 (wdi-ctryinfo.R) first downloads the life expectancy data to the data frame
le_data and renames the main variable. It then translates the country-level matrix into a data frame
ctryinfo and selects the country name and income classification. We can see that for example
Zimbabwe is classified as a Low income country. Our next challenge is to combine these two data
sets. We want to keep le_data and add the respective income classification by country from
ctryinfo. This is exactly what dplyr’s function left_join does. It figures that the variable
country exists in both data sets and therefore merges by this variable. The combined data set
alldata in the example corresponds to le_data but has the additional column income.

There are more functions to combine data sets: right_join keeps the rows of the second data
frame, inner_join keeps only rows that exist in both data sets, and full_join keeps all rows
that exist in any of the data sets. See Wickham and Grolemund (2016) and the cheat sheet on data
manipulation for details.23

23The cheat sheets can be found at https://www.rstudio.com/resources/cheatsheets/

https://www.rstudio.com/resources/cheatsheets/


1.5. Data Manipulation and Visualization: The Tidyverse 45

Figure 1.15. Advanced ggplot2 graph of country averages

40

50

60

70

80

1960 1970 1980 1990 2000 2010
Year

Li
fe

 e
xp

ec
ta

nc
y 

[Y
ea

rs
]

Income level

High income

Upper middle income

Lower middle income

Low income

Average by country classification

Life expectancy of women

Source: World Bank, WDI

Output of Script 1.32: wdi-ctryinfo.R

> library(WDI); library(dplyr)

> # Download raw life expectency data
> le_data <- WDI(indicator=c("SP.DYN.LE00.FE.IN"), start = 1960, end = 2014) %>%
> rename(LE = SP.DYN.LE00.FE.IN)

> tail(le_data)
iso2c country LE year

14515 ZW Zimbabwe 56.952 1965
14516 ZW Zimbabwe 56.521 1964
14517 ZW Zimbabwe 56.071 1963
14518 ZW Zimbabwe 55.609 1962
14519 ZW Zimbabwe 55.141 1961
14520 ZW Zimbabwe 54.672 1960

> # Country-data on income classification
> ctryinfo <- as.data.frame(WDI_data$country, stringsAsFactors = FALSE) %>%
> select(country, income)

> tail(ctryinfo)
country

299 Kosovo
300 Sub-Saharan Africa excluding South Africa and Nigeria
301 Yemen, Rep.
302 South Africa
303 Zambia
304 Zimbabwe

income
299 Lower middle income
300 Aggregates
301 Low income



46 1. Introduction

302 Upper middle income
303 Lower middle income
304 Low income

> # Join:
> alldata <- left_join(le_data, ctryinfo)
Joining, by = "country"

> tail(alldata)
iso2c country LE year income

14515 ZW Zimbabwe 56.952 1965 Low income
14516 ZW Zimbabwe 56.521 1964 Low income
14517 ZW Zimbabwe 56.071 1963 Low income
14518 ZW Zimbabwe 55.609 1962 Low income
14519 ZW Zimbabwe 55.141 1961 Low income
14520 ZW Zimbabwe 54.672 1960 Low income

Now we want to calculate the average life expectancy over all countries that share the same income
classification, separately by year. Within the tidyverse, dplyr offers the function summarize. The
structure is

summarize(olddf, newvar = somefunc(oldvars))

where somefunc is any function that accepts a vector and returns a scalar. In our case, we want to
calculate the average, so we choose the function mean, see Section 1.6. Since there are a few missing
values for the life expectancy, we need to use the option na.rm=TRUE. If we were to run

summarize(alldata, LE_avg = mean(LE, na.rm=TRUE))

then we would get the overall mean over all countries and years (which is around 65.5 years). That’s
not exactly our goal: We need to make sure that the average is to be taken separately by income
and year. This can be done by first grouping the data frame with group_by(income, year).
It indicates to functions like summarize to do the calculations by group. Such a grouping can be
removed with ungroup().

Script 1.33 (wdi-ctryavg.R) does these calculations. It first removes the rows that correspond to
aggregates (like Arab World) instead of individual countries and those countries that aren’t classi-
fied by the World Bank.24 Then, the grouping is added to the data set and the average is calculated.
The last six row of data are shown: They correspond to the income group Upper middle income
for the years 2009–2014. Now we are ready to plot the data with the familiar ggplot command. The
result is shown in Figure 1.16. We almost generated Figure 1.15. Whoever is interested in the last
beautification steps can have a look at Script 1.34 (wdi-ctryavg-beautify.R) in Appendix IV.

24It turns out that for some reason South Sudan is not classified and therefore removed from the analysis.



1.5. Data Manipulation and Visualization: The Tidyverse 47

Output of Script 1.33: wdi-ctryavg.R

> # Note: run wdi-ctryinfo.R first to define "alldata"!
>
> # Summarize by country and year
> avgdata <- alldata %>%
> filter(income != "Aggregates") %>% # remove rows for aggregates
> filter(income != "Not classified") %>% # remove unclassified ctries
> group_by(income, year) %>% # group by income classification
> summarize(LE_avg = mean(LE, na.rm=TRUE)) %>% # average by group
> ungroup() # remove grouping

> # First 6 rows:
> tail(avgdata)
# A tibble: 6 x 3

income year LE_avg
<chr> <int> <dbl>

1 Upper middle income 2009 74.1
2 Upper middle income 2010 74.4
3 Upper middle income 2011 74.7
4 Upper middle income 2012 75.0
5 Upper middle income 2013 75.3
6 Upper middle income 2014 75.6

> # plot
> ggplot(avgdata, aes(year, LE_avg, color=income)) +
> geom_line() +
> scale_color_grey()

Figure 1.16. Simple ggplot2 graph of country averages

40

50

60

70

80

1960 1980 2000
year

LE
_a

vg

income

High income

Low income

Lower middle income

Upper middle income



48 1. Introduction

1.6. Descriptive Statistics

Obviously, as a statistics program R offers many commands for descriptive statistics. In this section,
we cover the most important ones for our purpose.

1.6.1. Discrete Distributions: Frequencies and Contingency Tables

Suppose we have a sample of the random variables X and Y stored in the R vectors x and y, respec-
tively. For discrete variables, the most fundamental statistics are the frequencies of outcomes. The
command table(x) gives such a table of counts. If we provide two arguments like table(x,y),
we get the contingency table, i.e. the counts of each combination of outcomes for variables x and y.
For getting the sample shares instead of the counts, we can request prop.table(table(x)). For
the two-way tables, we can get a table of

• the overall sample share: prop.table(table(x,y))
• the share within x values (row percentages): prop.table(table(x,y),margin=1)
• the share within y values (column percentages): prop.table(table(x,y),margin=2)

As an example, we look at the data set affairs.dta. It contains two variables we look at in Script
1.35 (Descr-Tables.R) to demonstrate the workings of the table and prop.table commands:

• kids = 1 if the respondent has at least one child
• ratemarr = Rating of the own marriage (1=very unhappy, 5=very happy)

Output of Script 1.35: Descr-Tables.R

> # load data set
>
> data(affairs, package=’wooldridge’)

> # Generate "Factors" to attach labels
> haskids <- factor(affairs$kids,labels=c("no","yes"))

> mlab <- c("very unhappy","unhappy","average","happy", "very happy")

> marriage <- factor(affairs$ratemarr, labels=mlab)

> # Frequencies for having kids:
> table(haskids)
haskids
no yes

171 430

> # Marriage ratings (share):
> prop.table(table(marriage))
marriage
very unhappy unhappy average happy very happy

0.0266223 0.1098170 0.1547421 0.3227953 0.3860233

> # Contigency table: counts (display & store in var.)



1.6. Descriptive Statistics 49

> (countstab <- table(marriage,haskids))
haskids

marriage no yes
very unhappy 3 13
unhappy 8 58
average 24 69
happy 40 154
very happy 96 136

> # Share within "marriage" (i.e. within a row):
> prop.table(countstab, margin=1)

haskids
marriage no yes

very unhappy 0.1875000 0.8125000
unhappy 0.1212121 0.8787879
average 0.2580645 0.7419355
happy 0.2061856 0.7938144
very happy 0.4137931 0.5862069

> # Share within "haskids" (i.e. within a column):
> prop.table(countstab, margin=2)

haskids
marriage no yes

very unhappy 0.01754386 0.03023256
unhappy 0.04678363 0.13488372
average 0.14035088 0.16046512
happy 0.23391813 0.35813953
very happy 0.56140351 0.31627907

In the R script, we first generate factor versions of the two variables of interest. In this way, we can
generate tables with meaningful labels instead of numbers for the outcomes, see Section 1.2.3. Then
different tables are produced. Of the 601 respondents, 430 (=71.5%) have children. Overall, 2.66%
report to be very unhappy with their marriage and 38.6% are very happy. In the contingency table
with counts, we see for example that 136 respondents are very happy and have kids.

The table with the option margin=1 tells us that for example 81.25% of very unhappy individ-
uals have children and only 58.6% of very happy respondents have kids. The last table reports the
distribution of marriage ratings separately for people with and without kids: 56.1% of the respon-
dents without kids are very happy, whereas only 31.6% of those with kids report to be very happy
with their marriage. Before drawing any conclusions for your own family planning, please keep
on studying econometrics at least until you fully appreciate the difference between correlation and
causation!

There are several ways to graphically depict the information in these tables. Figure 1.17 demon-
strates the creation of basic pie and bar charts using the commands pie and barplot, respectively.
These figures can of course be tweaked in many ways, see the help pages and the general discussions
of graphics in section 1.4. We create vertical and horizontal (horiz=TRUE) bars, align the axis labels
to be horizontal (las=1) or perpendicular to the axes (las=2), include and position the legend, and
add a main title. The best way to explore the options is to tinker with the specification and observe
the results.



50 1. Introduction

Figure 1.17. Pie and bar plots

very unhappy

unhappy

average

happy

very happy
very unhappy

unhappy

average

happy

very happy

Distribution of Happiness

0 50 100 150 200

(a) pie(table(marriage), (b) barplot(table(marriage),
col=gray(seq(.2,1,.2))) horiz=TRUE,las=1,

main="Distribution of Happiness")

very unhappy

unhappy

average

happy

very happy

no
yes

Happiness by Kids

0 50 100 150 200

ve
ry

 u
nh

ap
py

un
ha

pp
y

av
er

ag
e

ha
pp

y

ve
ry

 h
ap

py

no
yes

0
20
40
60
80

100
120
140

(c) barplot(table(haskids,marriage), (d) barplot(table(haskids,marriage),
horiz=TRUE,las=1,legend=TRUE, beside=TRUE,las=2,legend=TRUE,
args.legend=c(x="bottomright"), args.legend=c(x="top"))
main="Happiness by Kids")



1.6. Descriptive Statistics 51

1.6.2. Continuous Distributions: Histogram and Density

For continuous variables, every observation has a distinct value. In practice, variables which have
many (but not infinitely many) different values can be treated in the same way. Since each value
appears only once (or a very few times) in the data, frequency tables or bar charts are not useful.
Instead, the values can be grouped into intervals. The frequency of values within these intervals can
then be tabulated or depicted in a histogram.

In R, the function hist(x, options) assigns observations to intervals which can be manually
set or automatically chosen and creates a histogram which plots values of x against the count or
density within the corresponding bin. The most relevant options are

• breaks=...: Set the interval boundaries:
– no breaks specified: let R choose number and position
– breaks=n for a scalar n: select the number of bins, but let R choose the position.
– breaks=v for a vector v: explicitly set the boundaries
– a function of name of algorithm for automatically choosing the breaks

• freq=FALSE: do not use the count but the density on the vertical axis. Default if breaks are
not equally spaced.

• We can use the general options for graphs like lwd or ylim mentioned in Section 1.4.2 to adjust
the appearance.

Let’s look at the data set CEOSAL1.dta which is described and used in Wooldridge (2019, Example
2.3). It contains information on the salary of CEOs and other information. We will try to depict
the distribution of the return on equity (ROE), measured in percent. Script 1.36 (Histogram.R)
generates the graphs of Figure 1.18. In Sub-figure (b), the breaks are manually chosen and not
equally spaced. Therefore, we automatically get the densities on the vertical axis: The sample share
of observations within a bin is therefore reflected by the area of the respective rectangle, not the
height.

Script 1.36: Histogram.R
# Load data
data(ceosal1, package=’wooldridge’)

# Extract ROE to single vector
ROE <- ceosal1$roe

# Subfigure (a): histogram (counts)
hist(ROE)

# Subfigure (b): histogram (densities, explicit breaks)
hist(ROE, breaks=c(0,5,10,20,30,60) )

A kernel density plot can be thought of as a more sophisticated version of a histogram. We cannot
go into detail here, but an intuitive (and oversimplifying) way to think about it is this: We could
create a histogram bin of a certain width, centered at an arbitrary point of x. We will do this for
many points and plot these x values against the resulting densities. Here, we will not use this plot
as an estimator of a population distribution but rather as a pretty alternative to a histogram for the
descriptive characterization of the sample distribution. For details, see for example Silverman (1986).

In R, generating a kernel density plot is straightforward: plot( density(x) ) will automat-
ically choose appropriate parameters of the algorithm given the data and often produce a useful
result. Of course, these parameters (like the kernel and bandwidth for those who know what that is)
can be set manually. Also general plot options can be used.



52 1. Introduction

Figure 1.18. Histograms

Histogram of ROE

ROE

F
re

qu
en

cy

0 10 20 30 40 50 60

0
20

40
60

Histogram of ROE

ROE

D
en

si
ty

0 10 20 30 40 50 60

0.
00

0.
03

0.
06

(a) hist(ROE) (b) hist(ROE,
breaks=c(0,5,10,20,30,60) )

Script 1.37 (KDensity.R) generates the graphs of Figure 1.19. In Sub-figure (b), a histogram is
overlayed with a kernel density plot by using the lines instead of the plot command for the latter.
We adjust the ylim axis limits and increase the line width using lwd.

Script 1.37: KDensity.R
# Subfigure (c): kernel density estimate
plot( density(ROE) )

# Subfigure (d): overlay
hist(ROE, freq=FALSE, ylim=c(0,.07))
lines( density(ROE), lwd=3 )

1.6.3. Empirical Cumulative Distribution Function (ECDF)

The ecdf is a graph of all values x of a variable against the share of observations with a value less
than or equal to x. A straightforward way to plot the ecdf for a variable x is plot(ecdf(x)). We
will just give a simple example and refer the interested reader to the help page or the internet for
further refinements. For our ROE variable, the ecdf created by the command plot(ecdf(ROE)) is
shown in Figure 1.20.

For example, the value of the ecdf for point ROE= 15.5 is 0.5. Half of the sample is less or equal to
a ROE of 15.5%. In other words: the median ROE is 15.5%.



1.6. Descriptive Statistics 53

Figure 1.19. Kernel Density Plots

0 10 20 30 40 50 60

0.
00

0.
04

density.default(x = ROE)

N = 209   Bandwidth = 1.754

D
en

si
ty

Histogram of ROE

ROE

D
en

si
ty

0 10 20 30 40 50 60

0.
00

0.
03

0.
06

(a) plot( density(ROE) ) (b) Overlayed histogram, see Script 1.37.

Figure 1.20. Empirical CDF

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(ROE)

x

F
n(

x)



54 1. Introduction

Table 1.4. R functions for descriptive statistics

mean(x) Sample average x = 1
n ∑n

i=1 xi
median(x) Sample median
var(x) Sample variance s2

x = 1
n−1 ∑n

i=1 (xi − x)2

sd(x) Sample standard deviation sx =
√

s2
x

cov(x,y) Sample covariance cxy = 1
n−1 ∑n

i=1 (xi − x) (yi − y)
cor(x,y) Sample correlation rxy =

sxy
sx ·sy

quantile(x,q) q quantile = 100 · q percentile, e.g. quantile(x,0.5) = sample median

1.6.4. Fundamental Statistics

The functions for calculating the most important descriptive statistics are listed in Table 1.4. The
command summary is a generic command that accepts many different object types and reports ap-
propriate summary information. For numerical vectors, summary displays the mean, median, quar-
tiles and extreme values. Script 1.38 (Descr-Stats.R) demonstrates this using the CEOSAL1.dta
data set we already introduced in Section 1.6.2.
summary(df) shows the summary statistics for all variables if df is a data frame. To calculate

all averages within rows or columns of matrices or data frames, consider the commands colSums,
rowSums, colMeans, and rowMeans.

Output of Script 1.38: Descr-Stats.R

> data(ceosal1, package=’wooldridge’)

> # sample average:
> mean(ceosal1$salary)
[1] 1281.12

> # sample median:
> median(ceosal1$salary)
[1] 1039

> #standard deviation:
> sd(ceosal1$salary)
[1] 1372.345

> # summary information:
> summary(ceosal1$salary)

Min. 1st Qu. Median Mean 3rd Qu. Max.
223 736 1039 1281 1407 14822

> # correlation with ROE:
> cor(ceosal1$salary, ceosal1$roe)
[1] 0.1148417

A box plot displays the median (the bold line), the upper and lower quartile (the box) and the
extreme points graphically. Figure 1.21 shows two examples. 50% of the observations are within
the interval covered by the box, 25% are above and 25% are below. The extreme points are marked
by the “whiskers” and outliers are printed as separate dots.25 In R, box plots are generated using

25The definition of an “outlier” relative to “extreme values” is somewhat arbitrary. Here, an value is deemed an outlier if it
is further away from the box than 1.5 times the interquartile range (i.e. the height/width of the box).



1.7. Probability Distributions 55

Figure 1.21. Box Plots

0 10 20 30 40 50 0 1

0
20

40

ceosal1$consprod

R
O

E

(a) boxplot(ROE,horizontal=TRUE) (b) boxplot(ROE~df$consprod)

the boxplot command. We have to supply the data vector and can alter the design flexibly with
numerous options.

Figure 1.21(a) shows how to get a horizontally aligned plot and Figure 1.21(b) demonstrates how
to produce different plots by sub group defined by a second variable. The variable consprod from
the data set ceosal1 is equal to 1 if the firm is in the consumer product business and 0 otherwise.
Apparently, the ROE is much higher in this industry.26

1.7. Probability Distributions

Appendix B of Wooldridge (2019) introduces the concepts of random variables and their probability
distributions.27 R has built in many functions for conveniently working with a large number of
statistical distributions. The commands for evaluating the probability density function (pdf) for
continuous, the probability mass function (pmf) for discrete, and the cumulative distribution function
(cdf) as well as the quantile function (inverse cdf) for the most relevant distributions are shown in
Table 1.5 together with the commands to generate a (pseudo-) random sample from the respective
distributions. We will now briefly discuss each of these function types.

1.7.1. Discrete Distributions

Discrete random variables can only take a finite (or “countably infinite”) set of values. The pmf
f (x) = P(X = x) gives the probability that a random variable X with this distribution takes the
given value x. For the most important of those distributions (Bernoulli, Binomial, Hypergeometric,
Poisson, and Geometric), Table 1.5 lists the R functions that return the pmf for any value x given the
parameters of the respective distribution.

For a specific example, let X denote the number of white balls we get when drawing with re-
placement 10 balls from an urn that includes 20% white balls. Then X has the Binomial distribution

26The data set is loaded in Script 1.38 (Descr-Stats.R) which therefore has to be executed before we can work with it.
27The stripped-down textbook for Europe and Africa Wooldridge (2014) does not include this appendix. But the material is

pretty standard.



56 1. Introduction

Table 1.5. R functions for statistical distributions
Distribution Param. pmf/pdf cdf Quantile Random numbers
Discrete distributions:
Bernoulli p dbinom(x,1,p) pbinom(x,1,p) qbinom(q,1,p) rbinom(R,1,p)
Binomial n, p dbinom(x,n,p) pbinom(x,n,p) qbinom(q,n,p) rbinom(R,n,p)
Hypergeom.S, W, n dhyper(x,S,W,n) phyper(x,S,W,n) qhyper(q,S,W,n) rhyper(R,S,W,n)
Poisson λ dpois(x,λ) ppois(x,λ) qpois(q,λ) rpois(R,λ)
Geometric p dgeom(x,p) pgeom(x,p) qgeom(q,p) rgeom(R,p)
Continuous distributions:
Uniform a, b dunif(x,a,b) punif(x,a,b) qunif(q,a,b) runif(R,a,b)
Logistic — dlogis(x) plogis(x) qlogis(q) rlogis(R)
Exponential λ dexp(x,λ) pexp(x,λ) qexp(q,λ) rexp(R,λ)
Std. normal — dnorm(x) pnorm(x) qnorm(q) rnorm(R)
Normal µ, σ dnorm(x,µ,σ) pnorm(x,µ,σ) qnorm(q,µ,σ) rnorm(R,µ,σ)
Lognormal m, s dlnorm(x,m,s) plnorm(x,m,s) qlnorm(q,m,s) rlnorm(R,m,s)
χ2 n dchisq(x,n) pchisq(x,n) qchisq(q,n) rchisq(R,n)
t n dt(x,n) pt(x,n) qt(q,n) rt(R,n)
F m, n df(x,m,n) pf(x,m,n) qf(q,m,n) rf(R,m,n)

with the parameters n = 10 and p = 20% = 0.2. We know that the probability to get exactly
x ∈ {0, 1, . . . , 10} white balls for this distribution is28

f (x) = P(X = x) =
(

n
x

)
· px · (1− p)n−x =

(
10
x

)
· 0.2x · 0.810−x (1.1)

For example, the probability to get exactly x = 2 white balls is f (2) = (10
2 ) · 0.22 · 0.88 = 0.302.

Of course, we can let R do these calculations using basic R commands we know from Section 1.1.
More conveniently, we can also use the built-in function for the Binomial distribution from Table 1.5
dbinom(x,n,p):

> # Pedestrian approach:
> choose(10,2) * 0.2^2 * 0.8^8
[1] 0.3019899

> # Built-in function:
> dbinom(2,10,0.2)
[1] 0.3019899

We can also give vectors as one or more arguments to dbinom(x,n,p) and receive the results as
a vector. Script 1.39 (PMF-example.R) evaluates the pmf for our example at all possible values for
x (0 through 10). It displays a table of the probabilities and creates a bar chart of these probabilities
which is shown in Figure 1.22(a). Note that the option type="h" of the command plot draws
vertical lines instead of points, see Section 1.4. As always: feel encouraged to experiment!

28see Wooldridge (2019, Equation (B.14))



1.7. Probability Distributions 57

Figure 1.22. Plots of the pmf and pdf

0 2 4 6 8 10

0.
00

0.
10

0.
20

0.
30

x

fx

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
(x

)

(a) Binomial pmf (b) Standard normal pdf

Output of Script 1.39: PMF-example.R

> # Values for x: all between 0 and 10
> x <- seq(0,10)

> # pmf for all these values
> fx <- dbinom(x, 10, 0.2)

> # Table(matrix) of values:
> cbind(x, fx)

x fx
[1,] 0 0.1073741824
[2,] 1 0.2684354560
[3,] 2 0.3019898880
[4,] 3 0.2013265920
[5,] 4 0.0880803840
[6,] 5 0.0264241152
[7,] 6 0.0055050240
[8,] 7 0.0007864320
[9,] 8 0.0000737280

[10,] 9 0.0000040960
[11,] 10 0.0000001024

> # Plot
> plot(x, fx, type="h")

1.7.2. Continuous Distributions

For continuous distributions like the uniform, logistic, exponential, normal, t, χ2, or F distribution,
the probability density functions f (x) are also implemented for direct use in R. These can for example
be used to plot the density functions using the curve command (see Section 1.4). Figure 1.22(b)
shows the famous bell-shaped pdf of the standard normal distribution. It was created using the
command curve( dnorm(x), -4,4 ).



58 1. Introduction

1.7.3. Cumulative Distribution Function (CDF)

For all distributions, the cdf F(x) = P(X ≤ x) represents the probability that the random variable X
takes a value of at most x. The probability that X is between two values a and b is P(a < X ≤ b) =
F(b)− F(a). We can directly use the built-in functions in the second column of Table 1.5 to do these
calculations. In our example presented above, the probability that we get 3 or fewer white balls is
F(3) using the appropriate cdf of the Binomial distribution. It amounts to 87.9%:

> pbinom(3, 10, 0.2)
[1] 0.8791261

The probability that a standard normal random variable takes a value between −1.96 and 1.96 is
95%:

> pnorm(1.96) - pnorm(-1.96)
[1] 0.9500042

Wooldridge, Example B.6: Probabilities for a normal random variableB.6

We assume X ∼ Normal(4, 9) and want to calculate P(2 < X ≤ 6). We can rewrite the problem so it
is stated in terms of a standard normal distribution as shown by Wooldridge (2019): P(2 < X ≤ 6) =
Φ( 2

3 )−Φ(− 2
3 ). We can also spare ourselves the transformation and work with the non-standard normal

distribution directly. Be careful that the third argument in the R commands for the normal distribution is
not the variance σ2 = 9 but the standard deviation σ = 3. P(|X| > 2) = 1− P(X ≤ 2)︸ ︷︷ ︸

P(X>2)

+ P(X < −2):

> # Using the transformation:
> pnorm(2/3) - pnorm(-2/3)
[1] 0.4950149

> # Working directly with the distribution of X:
> pnorm(6,4,3) - pnorm(2,4,3)
[1] 0.4950149

Note that we get a slightly different answer than the one given in Wooldridge (2019) since we’re working
with the exact 2

3 instead of the rounded .67. The same approach can be used for the second problem:

> 1 - pnorm(2,4,3) + pnorm(-2,4,3)
[1] 0.7702576

The graph of the cdf is a step function for discrete distributions and can therefore be best created
using the type="s" option of plot, see Section 1.4. For the urn example, the cdf is shown in Figure
1.23(a). It was created using the following code:

x <- seq(-1,10)
Fx <- pbinom(x, 10, 0.2)
plot(x, Fx, type="s")

The cdf of a continuous distribution can very well be plotted using the curve command. The S-
shaped cdf of the normal distribution is shown in Figure 1.23(b). It was simply generated with
curve( pnorm(x), -4,4 ).



1.7. Probability Distributions 59

Figure 1.23. Plots of the cdf of discrete and continuous RV

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
x

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pn
or

m
(x

)

(a) Binomial cdf (b) Standard normal cdf

Quantile function

The q-quantile x[q] of a random variable is the value for which the probability to sample a value
x ≤ x[q] is just q. These values are important for example for calculating critical values of test
statistics.

To give a simple example: Given X is standard normal, the 0.975-quantile is x[0.975] ≈ 1.96. So
the probability to sample a value less or equal to 1.96 is 97.5%:

> qnorm(0.975)
[1] 1.959964

1.7.4. Random Draws from Probability Distributions

It is easy to simulate random outcomes by taking a sample from a random variable with a given
distribution. Strictly speaking, a deterministic machine like a computer can never produce any truly
random results and we should instead refer to the generated numbers as pseudo-random numbers.
But for our purpose, it is enough that the generated samples look, feel and behave like true random
numbers and so we are a little sloppy in our terminology here. For a review of sampling and related
concepts see Wooldridge (2019, Appendix C.1).

Before we make heavy use of generating random samples in Section 1.10, we introduce the me-
chanics here. Table 1.5 shows the R commands to draw a random sample from the most important
distributions. We could for example simulate the result of flipping a fair coin 10 times. We draw a
sample of size n = 10 from a Bernoulli distribution with parameter p = 1

2 . Each of the 10 generated
numbers will take the value 1 with probability p = 1

2 and 0 with probability 1− p = 1
2 . The result

behaves the same way as though we had actually flipped a coin and translated heads as 1 and tails
as 0 (or vice versa). Here is the code and a sample generated by it:

> rbinom(10,1,0.5)
[1] 1 1 0 0 0 0 1 0 1 0

Translated into the coins, our sample is heads-heads-tails-tails-tails-tails-heads-tails-heads-tails. An
obvious advantage of doing this in R rather than with an actual coin is that we can painlessly increase



60 1. Introduction

the sample size to 1,000 or 10,000,000. Taking draws from the standard normal distribution is equally
simple:

> rnorm(10)
[1] 0.83446013 1.31241551 2.50264541 1.16823174 -0.42616558
[6] -0.99612975 -1.11394990 -0.05573154 1.17443240 1.05321861

Working with computer-generated random samples creates problems for the reproducibility of
the results. If you run the code above, you will get different samples. If we rerun the code, the
sample will change again. We can solve this problem by making use of how the random numbers
are actually generated which is, as already noted, not involving true randomness. Actually, we will
always get the same sequence of numbers if we reset the random number generator to some specific
state (“seed”). In R, this is done with set.seed(number), where number is some arbitrary number
that defines the state but has no other meaning. If we set the seed to some arbitrary number, take
a sample, reset the seed to the same state and take another sample, both samples will be the same.
Also, if I draw a sample with that seed it will be equal to the sample you draw if we both start from
the same seed.

Script 1.40 (Random-Numbers.R) demonstrates the workings of set.seed.

Output of Script 1.40: Random-Numbers.R

> # Sample from a standard normal RV with sample size n=5:
> rnorm(5)
[1] 0.05760597 -0.73504289 0.93052842 1.66821097 0.55968789

> # A different sample from the same distribution:
> rnorm(5)
[1] -0.75397477 1.25655419 0.03849255 0.18953983 0.46259495

> # Set the seed of the random number generator and take two samples:
> set.seed(6254137)

> rnorm(5)
[1] 0.6601307 0.5123161 -0.4616180 -1.3161982 0.1811945

> rnorm(5)
[1] -0.2933858 -0.9023692 1.8385493 0.5652698 -1.2848862

> # Reset the seed to the same value to get the same samples again:
> set.seed(6254137)

> rnorm(5)
[1] 0.6601307 0.5123161 -0.4616180 -1.3161982 0.1811945

> rnorm(5)
[1] -0.2933858 -0.9023692 1.8385493 0.5652698 -1.2848862



1.8. Confidence Intervals and Statistical Inference 61

1.8. Confidence Intervals and Statistical Inference

Wooldridge (2019) provides a concise overview over basic sampling, estimation, and testing. We will
touch on some of these issues below.29

1.8.1. Confidence Intervals

Confidence intervals (CI) are introduced in Wooldridge (2019, Appendix C.5). They are constructed
to cover the true population parameter of interest with a given high probability, e.g. 95%. More
clearly: For 95% of all samples, the implied CI includes the population parameter.

CI are easy to compute. For a normal population with unknown mean µ and variance σ2, the
100(1− α)% confidence interval for µ is given in Wooldridge (2019, Equations C.24 and C.25):[

ȳ− c α
2
· se(ȳ), ȳ + c α

2
· se(ȳ)

]
(1.2)

where ȳ is the sample average, se(ȳ) = s√
n is the standard error of ȳ (with s being the sample

standard deviation of y), n is the sample size and c α
2

the
(
1− α

2
)

quantile of the tn−1 distribution. To
get the 95% CI (α = 5%), we thus need c0.025 which is the 0.975 quantile or 97.5th percentile.

We already know how to calculate all these ingredients. If our sample is stored as a vector y, the
following code will calculate them and the confidence interval:

ybar<- mean(y)
n <- length(y)
s <- sd(y)
se <- s/sqrt(n)
c <- qt(.975, n-1)
CI <- c( ybar - c*se, ybar + c*se )

This “manual” way of calculating the CI is used in the solution to Example C.2. We will see a more
convenient way to calculate the confidence interval together with corresponding t test in Section
1.8.4. In Section 1.10.3, we will calculate confidence intervals in a simulation experiment to help us
understand the meaning of confidence intervals.

29The stripped-down textbook for Europe and Africa Wooldridge (2014) does not include the discussion of this material.



62 1. Introduction

Wooldridge, Example C.2: Effect of Job Training Grants on Worker Productiv-
ityC.2

We are analyzing scrap rates for firms that receive a job training grant in 1988. The scrap rates for 1987
and 1988 are printed in Wooldridge (2019, Table C.3) and are entered manually in the beginning of
Script 1.41 (Example-C-2.R). We are interested in the change between the years. The calculation of
its average as well as the confidence interval are performed precisely as shown above. The resulting CI
is the same as the one presented in Wooldridge (2019) except for rounding errors we avoid by working
with the exact numbers.

Output of Script 1.41: Example-C-2.R

> # Manually enter raw data from Wooldridge, Table C.3:
> SR87<-c(10,1,6,.45,1.25,1.3,1.06,3,8.18,1.67,.98,1,.45,
> 5.03,8,9,18,.28,7,3.97)

> SR88<-c(3,1,5,.5,1.54,1.5,.8,2,.67,1.17,.51,.5,.61,6.7,
> 4,7,19,.2,5,3.83)

> # Calculate Change (the parentheses just display the results):
> (Change <- SR88 - SR87)
[1] -7.00 0.00 -1.00 0.05 0.29 0.20 -0.26 -1.00 -7.51 -0.50 -0.47

[12] -0.50 0.16 1.67 -4.00 -2.00 1.00 -0.08 -2.00 -0.14

> # Ingredients to CI formula
> (avgCh<- mean(Change))
[1] -1.1545

> (n <- length(Change))
[1] 20

> (sdCh <- sd(Change))
[1] 2.400639

> (se <- sdCh/sqrt(n))
[1] 0.5367992

> (c <- qt(.975, n-1))
[1] 2.093024

> # Confidence interval:
> c( avgCh - c*se, avgCh + c*se )
[1] -2.27803369 -0.03096631



1.8. Confidence Intervals and Statistical Inference 63

Wooldridge, Example C.3: Race Discrimination in HiringC.3

We are looking into race discrimination using the data set AUDIT.dta. The variable y represents the
difference in hiring rates between black and white applicants with the identical CV. After calculating
the average, sample size, standard deviation and the standard error of the sample average, Script 1.42
(Example-C-3.R) calculates the value for the factor c as the 97.5 percentile of the standard normal
distribution which is (very close to) 1.96. Finally, the 95% and 99% CI are reported.30

Output of Script 1.42: Example-C-3.R

> data(audit, package=’wooldridge’)

> # Ingredients to CI formula
> (avgy<- mean(audit$y))
[1] -0.1327801

> (n <- length(audit$y))
[1] 241

> (sdy <- sd(audit$y))
[1] 0.4819709

> (se <- sdy/sqrt(n))
[1] 0.03104648

> (c <- qnorm(.975))
[1] 1.959964

> # 95% Confidence interval:
> avgy + c * c(-se,+se)
[1] -0.19363006 -0.07193011

> # 99% Confidence interval:
> avgy + qnorm(.995) * c(-se,+se)
[1] -0.21275051 -0.05280966

30Note that Wooldridge (2019) has a typo in the discussion of this example, therefore the numbers don’t quite match for the
95% CI.



64 1. Introduction

1.8.2. t Tests

Hypothesis tests are covered in Wooldridge (2019, Appendix C.6). The t test statistic for testing a
hypothesis about the mean µ of a normally distributed random variable Y is shown in Equation
C.35. Given the null hypothesis H0 : µ = µ0,

t =
ȳ− µ0

se(ȳ)
. (1.3)

We already know how to calculate the ingredients from Section 1.8.1. Given the calculations shown
there, t for the null hypothesis H0 : µ = 1 would simply be

t <- (ybar-1) / se

The critical value for this test statistic depends on whether the test is one-sided or two-sided.
The value needed for a two-sided test c α

2
was already calculated for the CI, the other values can be

generated accordingly. The values for different degrees of freedom n− 1 and significance levels α
are listed in Wooldridge (2019, Table G.2). Script 1.43 (Critical-Values-t.R) demonstrates how
we can calculate our own table of critical values for the example of 19 degrees of freedom.

Output of Script 1.43: Critical-Values-t.R

> # degrees of freedom = n-1:
> df <- 19

> # significance levels:
> alpha.one.tailed = c(0.1, 0.05, 0.025, 0.01, 0.005, .001)

> alpha.two.tailed = alpha.one.tailed * 2

> # critical values & table:
> CV <- qt(1 - alpha.one.tailed, df)

> cbind(alpha.one.tailed, alpha.two.tailed, CV)
alpha.one.tailed alpha.two.tailed CV

[1,] 0.100 0.200 1.327728
[2,] 0.050 0.100 1.729133
[3,] 0.025 0.050 2.093024
[4,] 0.010 0.020 2.539483
[5,] 0.005 0.010 2.860935
[6,] 0.001 0.002 3.579400

Wooldridge, Example C.5: Race Discrimination in HiringC.5

We continue Example C.3 and perform a one-sided t test of the null hypothesis H0 : µ = 0 against
H1 : µ < 0 for the same sample. Before we can execute Script 1.44 (Example-C-5.R), we therefore
have to run script Example-C-3.R to reuse the variables avgy, se, and n. As the output shows, the t
test statistic is equal to −4.27. This is much smaller than the negative of the critical value for any sensible
significance level. Therefore, we reject H0 : µ = 0 for this one-sided test, see Wooldridge (2019, Equation
C.38).



1.8. Confidence Intervals and Statistical Inference 65

Output of Script 1.44: Example-C-5.R

> # Note: we reuse variables from Example-C-3.R. It has to be run first!
> # t statistic for H0: mu=0:
> (t <- avgy/se)
[1] -4.276816

> # Critical values for t distribution with n-1=240 d.f.:
> alpha.one.tailed = c(0.1, 0.05, 0.025, 0.01, 0.005, .001)

> CV <- qt(1 - alpha.one.tailed, n-1)

> cbind(alpha.one.tailed, CV)
alpha.one.tailed CV

[1,] 0.100 1.285089
[2,] 0.050 1.651227
[3,] 0.025 1.969898
[4,] 0.010 2.341985
[5,] 0.005 2.596469
[6,] 0.001 3.124536

1.8.3. p Values

The p value for a test is the probability that (under the assumptions needed to derive the distribution
of the test statistic) a different random sample would produce the same or an even more extreme
value of the test statistic.31 The advantage of using p values for statistical testing is that they are
convenient to use. Instead of having to compare the test statistic with critical values which are
implied by the significance level α, we directly compare p with α. For two-sided t tests, the formula
for the p value is given in Wooldridge (2019, Equation C.42):

p = 2 · P(Tn−1 > |t|) = 2 ·
(
1− Ftn−1(|t|)

)
, (1.4)

where Ftn−1(·) is the cdf of the tn−1 distribution which we know how to calculate from Table 1.5.
Similarly, a one-sided test rejects the null hypothesis only if the value of the estimate is “too high”
or “too low” relative to the null hypothesis. The p values for these types of tests are

p =

{
P(Tn−1 < t) = Ftn−1(t) for H1 : µ < µ0

P(Tn−1 > t) = 1− Ftn−1(t) for H1 : µ > µ0
(1.5)

Since we are working on a computer program that knows the cdf of the t distribution as pt,
calculating p values is straightforward: Given we have already calculated the t statistic above, the p
value would simply be one of the following expressions, depending of the type of the null hypothesis:

p <- 2 * ( 1 - pt(abs(t), n-1) )
p <- pt(t, n-1)
p <- 1 - pt(t, n-1)

31The p value is often misinterpreted. It is for example not the probability that the null hypothesis is true. For a discussion,
see for example https://www.nature.com/news/scientific-method-statistical-errors-1.14700.

https://www.nature.com/news/scientific-method-statistical-errors-1.14700


66 1. Introduction

Wooldridge, Example C.6: Effect of Job Training Grants on Worker Productiv-
ityC.6

We continue from Example C.2. Before we can execute Script 1.41 (Example-C-2.R), we have to run
Example-C-2.R so we can reuse the variables avgCh and se. We test H0 : µ = 0 against H1 : µ < 0. The
t statistic is −2.15. The formula for the p value for this one-sided test is given in Wooldridge (2019, Equation
C.41). As can be seen in the output of Script 1.45 (Example-C-6.R), its value (using exact values of t) is
around 0.022.

Output of Script 1.45: Example-C-6.R

> # Note: we reuse variables from Example-C-2.R. It has to be run first!
> # t statistic for H0: mu=0:
> (t <- avgCh/se)
[1] -2.150711

> # p value
> (p <- pt(t,n-1))
[1] 0.02229063

Wooldridge, Example C.7: Race Discrimination in HiringC.7

In Example C.5, we found the t statistic for H0 : µ = 0 against H1 : µ < 0 to be t = −4.276816. The
corresponding p value is calculated in Script 1.46 (Example-C-7.R). The number 1.369271e-05 is the
scientific notation for 1.369271 · 10−5 = .00001369271. So the p value is around 0.0014% which is much
smaller than any reasonable significance level. By construction, we draw the same conclusion as when
we compare the t statistic with the critical value in Example C.5. We reject the null hypothesis that there
is no discrimination.

Output of Script 1.46: Example-C-7.R

> # t statistic for H0: mu=0:
> t <- -4.276816

> # p value
> (p <- pt(t,240))
[1] 1.369273e-05

1.8.4. Automatic calculations

In Sections 1.8.1 through 1.8.3, we used R as an advanced calculator that can easily calculate statistics
from data and knows the distribution tables. Real life is even more convenient. R has a huge number
of commands that perform all these sorts of calculations automatically for various kinds of estimation
and testing problems.

For our problem of testing a hypothesis about the population mean, the command t.test is
handy. For different hypotheses, it automatically provides

• the sample average Ȳ
• the sample size n



1.8. Confidence Intervals and Statistical Inference 67

• the confidence interval (95% by default)
• the t statistic
• the p value

So we get all the information we previously calculated in several steps with one call of this command.
With the vector y including the sample data, we can simply call

t.test(y)

This would implicitly calculate the relevant results for the two-sided test of the null H0 : µy = µ0, H1 :
µy 6= µ0, where µ0 = 0 by default. The 95% CI is reported. We can choose different tests using the
options

• alternative="greater" for H0 : µy = µ0, H1 : µy > µ0

• alternative="less" for H0 : µy = µ0, H1 : µy < µ0

• mu=value to set µ0 =value instead of µ0 = 0
• conf.level=value to set the confidence level to value·100% instead of conf.level=0.95

To give a comprehensive example: Suppose you want to test H0 : µy = 5 against the one-sided
alternative H1 : µy > 5 and obtain a 99% CI. The command would be

t.test(y, mu=5, alternative="greater", conf.level=0.99)

Examples C.2 – C.7 revisited:
Script 1.47 (Examples-C2-C6.R) replicates the same results as already shown in Examples

C.2 and C.6 using the simple call of t.test. Reassuringly, it produces the same values we
manually calculated above plus some other results. Script 1.48 (Examples-C3-C5-C7.R)
does the same for the results in Examples C.3, C.5, and C.7.

Output of Script 1.47: Examples-C2-C6.R

> # data for the scrap rates examples:
> SR87<-c(10,1,6,.45,1.25,1.3,1.06,3,8.18,1.67,.98,1,.45,5.03,8,9,18,.28,
> 7,3.97)

> SR88<-c(3,1,5,.5,1.54,1.5,.8,2,.67,1.17,.51,.5,.61,6.7,4,7,19,.2,5,3.83)

> Change <- SR88 - SR87

> # Example C.2: two-sided CI
> t.test(Change)

One Sample t-test

data: Change
t = -2.1507, df = 19, p-value = 0.04458
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-2.27803369 -0.03096631

sample estimates:
mean of x

-1.1545



68 1. Introduction

> # Example C.6: 1-sided test:
> t.test(Change, alternative="less")

One Sample t-test

data: Change
t = -2.1507, df = 19, p-value = 0.02229
alternative hypothesis: true mean is less than 0
95 percent confidence interval:

-Inf -0.2263028
sample estimates:
mean of x
-1.1545

Output of Script 1.48: Examples-C3-C5-C7.R

> data(audit, package=’wooldridge’)

> # Example C.3: two-sided CI
> t.test(audit$y)

One Sample t-test

data: audit$y
t = -4.2768, df = 240, p-value = 2.739e-05
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.1939385 -0.0716217

sample estimates:
mean of x

-0.1327801

> # Examples C.5 & C.7: 1-sided test:
> t.test(audit$y, alternative="less")

One Sample t-test

data: audit$y
t = -4.2768, df = 240, p-value = 1.369e-05
alternative hypothesis: true mean is less than 0
95 percent confidence interval:

-Inf -0.08151529
sample estimates:
mean of x

-0.1327801



1.8. Confidence Intervals and Statistical Inference 69

The command t.test is our first example of a function that returns a list. Instead of just
displaying the results as we have done so far, we can store them as an object for further use. Section
1.2.6 described the general workings of these sorts of objects.

If we store the results for example as testres <- t.test(...), the object testres contains
all relevant information about the test results. Like a basic list, the names of all components can be
displayed with names(testres). They include

• statistic = value of the test statistic
• p.value = value of the p value of the test
• conf.int = confidence interval

A single component, for example p.value is accessed as testres$p.value. Script 1.49
(Test-Results-List.R) demonstrates this for the test in Example C.3.

Output of Script 1.49: Test-Results-List.R

> data(audit, package=’wooldridge’)

> # store test results as a list "testres"
> testres <- t.test(audit$y)

> # print results:
> testres

One Sample t-test

data: audit$y
t = -4.2768, df = 240, p-value = 2.739e-05
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.1939385 -0.0716217

sample estimates:
mean of x

-0.1327801

> # component names: which results can be accessed?
> names(testres)
[1] "statistic" "parameter" "p.value" "conf.int"
[5] "estimate" "null.value" "stderr" "alternative"
[9] "method" "data.name"

> # p-value
> testres$p.value
[1] 2.738542e-05



70 1. Introduction

1.9. More Advanced R

The material covered in this section is not necessary for most of what we will do in the remainder
of this book, so it can be skipped. However, it is important enough to justify an own section in this
chapter. We will only scratch the surface, though. For more details, you will have to look somewhere
else, for example Matloff (2011), Teetor (2011) and Wickham (2014).

1.9.1. Conditional Execution

We might want some parts of our code to be executed only under certain conditions. Like most other
programming languages, this can be achieved with an if statement. The structure is:

if (condition) expression1 else expression2

The condition has to be a single logical value (TRUE or FALSE). If it is TRUE, then expression1
is executed, otherwise expression2 which can also be omitted. A simple example would be

if (p<=0.05) decision<-"reject H0!" else decision<-"don’t reject H0!"

The character object decision will take the respective value depending on the value of the numeric
scalar p. Often, we want to conditionally execute several lines of code. This can easily be achieved by
grouping the expressions in curly braces {...}. Note that the else statement (if it is used) needs
to go on the same line as the closing brace of the if statement. So the structure will look like

if (condition) {
[several...
...lines...
... of code]

} else {
[different...
...lines...
... of code]

}

1.9.2. Loops

For repeatedly executing an expression (which can again be grouped by braces {...}), different
kinds of loops are available. In this book, we will use them for Monte Carlo analyses introduced in
Section 1.10. For our purposes, the for loop is well suited. Its typical structure is as follows:

for (loopvar in vector) {
[some commands]

}

The loop variable loopvar will take the value of each element of vector, one after another. For
each of these elements, [some commands] are executed. Often, vector will be a sequence like
1:100.

A nonsense example which combines for loops with an if statement is the following:



1.9. More Advanced R 71

for (i in 1:6) {
if (i<4) {

print(i^3)
} else {

print(i^2)
}

}

Note that the print commands are necessary to print any results within expressions grouped by
braces. The reader is encouraged to first form expectations about the output this will generate and
then compare them with the actual results:

[1] 1
[1] 8
[1] 27
[1] 16
[1] 25
[1] 36

R offers more ways to repeat expressions, but we will not present them here. Interested readers
can look up commands like repeat, while, replicate, apply or lapply.

1.9.3. Functions

Functions are special kinds of objects in R. There are many pre-defined functions – the first one we
used was sqrt. Packages provide more functions to expand the capabilities of R. And now, we’re
ready to define our own little function. The command function(arg1, arg2,...) defines a
new function which accepts the arguments arg1, arg2,. . . The function definition follows in arbitrar-
ily many lines of code enclosed in curly braces. Within the function, the command return(stuff)
means that stuff is to be returned as a result of the function call. For example, we can define the
function mysqrt that expects one argument internally named x as

mysqrt <- function(x) {
if(x>=0){

return(sqrt(x))
} else {

return("You fool!")
}

}

Once we have executed this function definition, mysqrt is known to the system and we can use it
just like any other function:

> mysqrt(4)
[1] 2
> mysqrt(-1)
[1] "You fool!"

1.9.4. Outlook

While this section is called “Advanced R”, we have admittedly only scratched the surface of semi-
advanced topics. One topic we defer to Chapter 19 is how R can automatically create formatted
reports and publication-ready documents.



72 1. Introduction

Another advanced topic is the optimization of computational speed. Like most other software
packages used for econometrics, R is an interpreted language. A disadvantage compared to compiled
languages like C++ or Fortran is that the execution speed for computationally intensive tasks is lower.
So an example of seriously advanced topics for the real R geek is how to speed up computations.
Possibilities include compiling R code, integrating C++ or Fortran code, and parallel computing.

Since real R geeks are not the target audience of this book, we will stop to even mention more
intimidating possibilities and focus on implementing the most important econometric methods in
the most straightforward and pragmatic way.

1.10. Monte Carlo Simulation

Appendix C.2 of Wooldridge (2019) contains a brief introduction to estimators and their properties.32

In real-world applications, we typically have a data set corresponding to a random sample from a
well-defined population. We don’t know the population parameters and use the sample to estimate
them.

When we generate a sample using a computer program as we have introduced in Section 1.7.4, we
know the population parameters since we had to choose them when making the random draws. We
could apply the same estimators to this artificial sample to estimate the population parameters. The
tasks would be: (1) Select a population distribution and its parameters. (2) Generate a sample from
this distribution. (3) Use the sample to estimate the population parameters.

If this sounds a little insane to you: Don’t worry, that would be a healthy first reaction. We obtain
a noisy estimate of something we know precisely. But this sort of analysis does in fact make sense.
Because we estimate something we actually know, we are able to study the behavior of our estimator
very well.

In this book, we mainly use this approach for illustrative and didactic reasons. In state-of-the-art
research, it is widely used since it often provides the only way to learn about important features of
estimators and statistical tests. A name frequently given to these sorts of analyses is Monte Carlo
simulation in reference to the “gambling” involved in generating random samples.

1.10.1. Finite Sample Properties of Estimators

Let’s look at a simple example and simulate a situation in which we want to estimate the mean µ of
a normally distributed random variable

Y ∼ Normal(µ, σ2) (1.6)

using a sample of a given size n. The obvious estimator for the population mean would be the
sample average Ȳ. But what properties does this estimator have? The informed reader immediately
knows that the sampling distribution of Ȳ is

Ȳ ∼ Normal
(

µ,
σ2

n

)
(1.7)

Simulation provides a way to verify this claim.
Script 1.50 (Simulate-Estimate.R) shows a simulation experiment in action: We set the seed to

ensure reproducibility and draw a sample of size n = 100 from the population distribution (with the
population parameters µ = 10 and σ = 2).33 Then, we calculate the sample average as an estimate
of µ. We see results for three different samples.

32The stripped-down textbook for Europe and Africa Wooldridge (2014) does not include this either.
33See Section 1.7.4 for the basics of random number generation.



1.10. Monte Carlo Simulation 73

Output of Script 1.50: Simulate-Estimate.R

> # Set the random seed
> set.seed(123456)

> # Draw a sample given the population parameters
> sample <- rnorm(100,10,2)

> # Estimate the population mean with the sample average
> mean(sample)
[1] 10.03364

> # Draw a different sample and estimate again:
> sample <- rnorm(100,10,2)

> mean(sample)
[1] 9.913197

> # Draw a third sample and estimate again:
> sample <- rnorm(100,10,2)

> mean(sample)
[1] 10.21746

All sample means Ȳ are around the true mean µ = 10 which is consistent with our presumption
formulated in Equation 1.7. It is also not surprising that we don’t get the exact population parameter
– that’s the nature of the sampling noise. According to Equation 1.7, the results are expected to have
a variance of σ2

n = 0.04. Three samples of this kind are insufficient to draw strong conclusions
regarding the validity of Equation 1.7. Good Monte Carlo simulation studies should use as many
samples as possible.

In Section 1.9.2, we introduced for loops. While they are not the most powerful technique
available in R to implement a Monte Carlo study, we will stick to them since they are quite
transparent and straightforward. The code shown in Script 1.51 (Simulation-Repeated.R) uses
a for loop to draw 10 000 samples of size n = 100 and calculates the sample average for all of
them. After setting the random seed, a vector ybar is initialized to 10 000 zeros using the numeric
command. We will replace these zeros with the estimates one after another in the loop. In each of
these replications j = 1, 2, . . . , 10 000, a sample is drawn, its average calculated and stored in position
number j of ybar. In this way, we end up with a vector of 10 000 estimates from different samples.
The script Simulation-Repeated.R does not generate any output.

Script 1.51: Simulation-Repeated.R
# Set the random seed
set.seed(123456)

# initialize ybar to a vector of length r=10000 to later store results:
r <- 10000
ybar <- numeric(r)

# repeat r times:
for(j in 1:r) {

# Draw a sample and store the sample mean in pos. j=1,2,... of ybar:
sample <- rnorm(100,10,2)
ybar[j] <- mean(sample)

}



74 1. Introduction

Script 1.52 (Simulation-Repeated-Results.R) analyses these 10 000 estimates. Their average
is very close to the presumption µ = 10 from Equation 1.7. Also the simulated sampling variance
is close to the theoretical result σ2

n = 0.04. Finally, the estimated density (using a kernel density
estimate) is compared to the theoretical normal distribution. The option add=TRUE of the curve
command requests the normal curve to be drawn on top of the previous graph instead of creating
a new one and lty=2 changes the line type to a dashed curve. The result is shown in Figure 1.24.
The two lines are almost indistinguishable except for the area close to the mode (where the kernel
density estimator is known to have problems).

Output of Script 1.52: Simulation-Repeated-Results.R

> # The first 20 of 10000 estimates:
> ybar[1:20]
[1] 10.033640 9.913197 10.217455 10.121745 9.837282 10.375066
[7] 10.026097 9.777042 9.903131 10.012415 9.930439 10.394639

[13] 9.642143 10.196132 9.804443 10.203723 9.962646 9.620169
[19] 9.757859 10.328590

> # Simulated mean:
> mean(ybar)
[1] 9.998861

> # Simulated variance:
> var(ybar)
[1] 0.04034146

> # Simulated density:
> plot(density(ybar))

> curve( dnorm(x,10,sqrt(.04)), add=TRUE,lty=2)

Figure 1.24. Simulated and theoretical density of Ȳ

9.5 10.0 10.5

0.
0

0.
5

1.
0

1.
5

2.
0 density.default(x = ybar)

D
en

si
ty



1.10. Monte Carlo Simulation 75

To summarize, the simulation results confirm the theoretical results in Equation 1.7. Mean, vari-
ance and density are very close and it seems likely that the remaining tiny differences are due to the
fact that we “only” used 10 000 samples.

Remember: for most advanced estimators, such simulations are the only way to study some of
their features since it is impossible to derive theoretical results of interest. For us, the simple exam-
ple hopefully clarified the approach of Monte Carlo simulations and the meaning of the sampling
distribution and prepared us for other interesting simulation exercises.

1.10.2. Asymptotic Properties of Estimators

Asymptotic analyses are concerned with large samples and with the behavior of estimators and
other statistics as the sample size n increases without bound. For a discussion of these topics, see
Wooldridge (2019, Appendix C.3). According to the law of large numbers, the sample average Ȳ in
the above example converges in probability to the population mean µ as n→ ∞. In (infinitely) large
samples, this implies that E(Ȳ)→ µ and Var(Ȳ)→ 0.

With Monte Carlo simulation, we have a tool to see how this works out in our example. We
just have to change the sample size in the code line sample <- rnorm(100,10,2) in Script 1.51
(Simulation-Repeated.R) from 100 to a different number and rerun the simulation code. Results
for n = 10, 50, 100, and 1000 are presented in Figure 1.25.34 Apparently, the variance of Ȳ does in
fact decrease. The graph of the density for n = 1000 is already very narrow and high indicating a
small variance. Of course, we cannot actually increase n to infinity without crashing our computer,
but it appears plausible that the density will eventually collapse into one vertical line corresponding
to Var(Ȳ)→ 0 as n→ ∞.

In our example for the simulations, the random variable Y was normally distributed, therefore
the sample average Ȳ was also normal for any sample size. This can also be confirmed in Figure
1.25 where the respective normal densities were added to the graphs as dashed lines. The central
limit theorem (CLT) claims that as n → ∞, the sample mean Ȳ of a random sample will eventually
always be normally distributed, no matter what the distribution of Y is (unless it is very weird with
an infinite variance). This is called convergence in distribution.

Let’s check this with a very non-normal distribution, the χ2 distribution with one degree of
freedom. Its density is depicted in Figure 1.26.35 It looks very different from our familiar
bell-shaped normal density. The only line we have to change in the simulation code in Script
1.51 (Simulation-Repeated.R) is sample <- rnorm(n,10,2) which we have to replace with
sample <- rchisq(n,1) according to Table 1.5. Figure 1.27 shows the simulated densities for
different sample sizes and compares them to the normal distribution with the same mean µ = 1 and

standard deviation s√
n =

√
2
n . Note that the scales of the axes now differ between the sub-figures in

order to provide a better impression of the shape of the densities. The effect of a decreasing variance
works here in exactly the same way as with the normal population.

Not surprisingly, the distribution of Ȳ is very different from a normal one in small samples like
n = 2. With increasing sample size, the CLT works its magic and the distribution gets closer to the
normal bell-shape. For n = 10000, the densities hardly differ at all so it’s easy to imagine that they
will eventually be the same as n→ ∞.

34In order to ensure the same scale in each graph, the axis limits were manually set instead of being chosen by R. This was
done using the options xlim=c(8.5,11.5),ylim=c(0,2) in the plot command producing the estimated density.

35A motivated reader will already have figured out that this graph was generated by curve( dchisq(x,1) ,0,3).



76 1. Introduction

Figure 1.25. Density of Ȳ with different sample sizes

8.5 9.0 9.5 10.0 10.5 11.0 11.5

0.
0

0.
5

1.
0

1.
5

2.
0

density.default(x = ybar)

D
en

si
ty

8.5 9.0 9.5 10.0 10.5 11.0 11.5

0.
0

0.
5

1.
0

1.
5

2.
0

density.default(x = ybar)

D
en

si
ty

(a) n = 10 (b) n = 50

8.5 9.0 9.5 10.0 10.5 11.0 11.5

0.
0

0.
5

1.
0

1.
5

2.
0

density.default(x = ybar)

D
en

si
ty

8.5 9.0 9.5 10.0 10.5 11.0 11.5

0.
0

0.
5

1.
0

1.
5

2.
0

density.default(x = ybar)

D
en

si
ty

(c) n = 100 (d) n = 1000



1.10. Monte Carlo Simulation 77

Figure 1.26. Density of the χ2 distribution with 1 d.f.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.

0
0.

5
1.

0
1.

5
2.

0

dc
hi

sq
(x

, 1
)

Figure 1.27. Density of Ȳ with different sample sizes: χ2 distribution

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8 density.default(x = ybar)

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 density.default(x = ybar)

D
en

si
ty

(a) n = 2 (b) n = 10

0.6 0.8 1.0 1.2 1.4 1.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

density.default(x = ybar)

D
en

si
ty

0.94 0.96 0.98 1.00 1.02 1.04 1.06

0
5

10
15

20
25

density.default(x = ybar)

D
en

si
ty

(c) n = 100 (d) n = 10000



78 1. Introduction

1.10.3. Simulation of Confidence Intervals and t Tests

In addition to repeatedly estimating population parameters, we can also calculate confidence inter-
vals and conduct tests on the simulated samples. Here, we present a somewhat advanced simulation
routine. The payoff of going through this material is that it might substantially improve our under-
standing of the workings of statistical inference.

We start from the same example as in Section 1.10.1: In the population, Y ∼ Normal(10, 4). We
draw 10 000 samples of size n = 100 from this population. For each of the samples we calculate

• The 95% confidence interval and store the limits in the vectors CIlower and CIupper.
• The p value for the two-sided test of the correct null hypothesis H0 : µ = 10⇒ vector pvalue1
• The p value for the two-sided test of the incorrect null hypothesis H0 : µ = 9.5 ⇒ vector
pvalue2

Finally, we calculate the logical vectors reject1 and reject2 that are TRUE if we reject the
respective null hypothesis at α = 5%, i.e. if pvalue1 or pvalue2 are smaller than 0.05, respectively.
Script 1.53 (Simulation-Inference.R) shows the R code for these simulations and a frequency
table for the results reject1 and reject2.

If theory and the implementation in R are accurate, the probability to reject a correct null hypoth-
esis (i.e. to make a Type I error) should be equal to the chosen significance level α. In our simulation,
we reject the correct hypothesis in 508 of the 10 000 samples, which amounts to 5.08%.

The probability to reject a false hypothesis is called the power of a test. It depends on many things
like the sample size and “how bad” the error of H0 is, i.e. how far away µ0 is from the true µ. Theory
just tells us that the power is larger than α. In our simulation, the wrong null H0 : µ = 9.5 is rejected
in 69.57% of the samples. The reader is strongly encouraged to tinker with the simulation code to
verify the theoretical results that this power increases if µ0 moves away from 10 and if the sample
size n increases.

Figure 1.28 graphically presents the 95% CI for the first 100 simulated samples.36 Each horizontal
line represents one CI. In these first 100 samples, the true null was rejected in 3 cases. This fact
means that for those three samples the CI does not cover µ0 = 10, see Wooldridge (2019, Appendix
C.6) on the relationship between CI and tests. These three cases are drawn in black in the left part of
the figure, whereas the others are gray.

The t-test rejects the false null hypothesis H0 : µ = 9.5 in 72 of the first 100 samples. Their CIs do
not cover 9.5 and are drawn in black in the right part of Figure 1.28.

Output of Script 1.53: Simulation-Inference.R

> # Set the random seed
> set.seed(123456)

> # initialize vectors to later store results:
> r <- 10000

> CIlower <- numeric(r); CIupper <- numeric(r)

> pvalue1 <- numeric(r); pvalue2 <- numeric(r)

> # repeat r times:
> for(j in 1:r) {
> # Draw a sample
> sample <- rnorm(100,10,2)

36For the sake of completeness, the code for generating these graphs is shown in Appendix IV, Script 1.54
(Simulation-Inference-Figure.R), but most readers will probably not find it important to look at it at this point.



1.10. Monte Carlo Simulation 79

> # test the (correct) null hypothesis mu=10:
> testres1 <- t.test(sample,mu=10)
> # store CI & p value:
> CIlower[j] <- testres1$conf.int[1]
> CIupper[j] <- testres1$conf.int[2]
> pvalue1[j] <- testres1$p.value
> # test the (incorrect) null hypothesis mu=9.5 & store the p value:
> pvalue2[j] <- t.test(sample,mu=9.5)$p.value
> }

> # Test results as logical value
> reject1<-pvalue1<=0.05; reject2<-pvalue2<=0.05

> table(reject1)
reject1
FALSE TRUE
9492 508

> table(reject2)
reject2
FALSE TRUE
3043 6957

Figure 1.28. Simulation results: First 100 confidence intervals

9.0 9.5 10.0 10.5 11.0

0
20

40
60

80
10

0

Correct H0

S
am

pl
e 

N
o.

9.0 9.5 10.0 10.5 11.0

0
20

40
60

80
10

0

Incorrect H0

S
am

pl
e 

N
o.





Part I.

Regression Analysis with
Cross-Sectional Data





2. The Simple Regression Model

2.1. Simple OLS Regression

We are concerned with estimating the population parameters β0 and β1 of the simple linear regres-
sion model

y = β0 + β1x + u (2.1)

from a random sample of y and x. According to Wooldridge (2019, Section 2.2), the ordinary least
squares (OLS) estimators are

β̂0 = ȳ− β̂1 x̄ (2.2)

β̂1 =
Cov(x, y)

Var(x)
. (2.3)

Based on these estimated parameters, the OLS regression line is

ŷ = β̂0 + β̂1x. (2.4)

For a given sample, we just need to calculate the four statistics ȳ, x̄, Cov(x, y), and Var(x) and
plug them into these equations. We already know how to make these calculations in R, see Section
1.6. Let’s do it!

Wooldridge, Example 2.3: CEO Salary and Return on Equity2.3

We are using the data set CEOSAL1.dta we already analyzed in Section 1.6. We consider the simple
regression model

salary = β0 + β1roe+ u

where salary is the salary of a CEO in thousand dollars and roe is the return on investment in percent.
In Script 2.1 (Example-2-3.R), we first load and “attach” the data set. We also calculate the four
statistics we need for Equations 2.2 and 2.3 so we can reproduce the OLS formulas by hand. Finally, the
parameter estimates are calculated.
So the OLS regression line is

̂salary = 963.1913 + 18.50119 · roe



84 2. The Simple Regression Model

Output of Script 2.1: Example-2-3.R

> data(ceosal1, package=’wooldridge’)

> attach(ceosal1)

> # ingredients to the OLS formulas
> cov(roe,salary)
[1] 1342.538

> var(roe)
[1] 72.56499

> mean(salary)
[1] 1281.12

> mean(roe)
[1] 17.18421

> # manual calculation of OLS coefficients
> ( b1hat <- cov(roe,salary)/var(roe) )
[1] 18.50119

> ( b0hat <- mean(salary) - b1hat*mean(roe) )
[1] 963.1913

> # "detach" the data frame
> detach(ceosal1)

While calculating OLS coefficients using this pedestrian approach is straightforward, there is a
more convenient way to do it. Given the importance of OLS regression, it is not surprising that R
has a specialized command to do the calculations automatically.

If the values of the dependent variable are stored in the vector y and those of the regressor are in
the vector x, we can calculate the OLS coefficients as

lm( y ~ x )

The name of the command lm comes from the abbreviation of linear model. Its argument y ~ x is
called a formula in R lingo. Essentially, it means that we want to model a left-hand-side variable
y to be explained by a right-hand-side variable x in a linear fashion. We will discuss more general
model formulae in Section 6.1.

If we have a data frame df with the variables y and x, instead of calling lm( df$y ~ df$x ),
we can use the more elegant version

lm( y ~ x, data=df )

Wooldridge, Example 2.3: CEO Salary and Return on Equity (cont’ed)2.3

In Script 2.2 (Example-2-3-2.R), we repeat the analysis we have already done manually. Besides the
import of the data, there is only one line of code. The output of lm shows both estimated parameters:
β̂0 under (Intercept) and β̂1 under the name of the explanatory variable roe. The values are the
same we already calculated except for different rounding in the output.



2.1. Simple OLS Regression 85

Output of Script 2.2: Example-2-3-2.R

> data(ceosal1, package=’wooldridge’)

> # OLS regression
> lm( salary ~ roe, data=ceosal1 )

Call:
lm(formula = salary ~ roe, data = ceosal1)

Coefficients:
(Intercept) roe

963.2 18.5

From now on, we will rely on the built-in routine lm instead of doing the calculations manually.
It is not only more convenient for calculating the coefficients, but also for further analyses as we will
see soon.
lm returns its results in a special version of a list.1 We can store these results in an object using

code like

myolsres <- lm( y ~ x )

This will create an object with the name myolsres or overwrite it if it already existed. The name
could of course be anything, for example yummy.chocolate.chip.cookies, but choosing telling
variable names makes our life easier. This object does not only include the vector of OLS coefficients,
but also information on the data source and much more we will get to know and use later on.

Given the results from a regression, plotting the regression line is straightforward. As we have
already seen in Section 1.4.3, the command abline(...) can add a line to a graph. It is clever
enough to understand our objective if we simply supply the regression result object as an argument.

Wooldridge, Example 2.3: CEO Salary and Return on Equity (cont’ed)2.3

Script 2.3 (Example-2-3-3.R) demonstrates how to store the regression results in a variable CEOregres
and then use it as an argument to abline to add the regression line to the scatter plot. It generates
Figure 2.1.

Script 2.3: Example-2-3-3.R
data(ceosal1, package=’wooldridge’)

# OLS regression
CEOregres <- lm( salary ~ roe, data=ceosal1 )

# Scatter plot (restrict y axis limits)
with(ceosal1, plot(roe, salary, ylim=c(0,4000)))

# Add OLS regression line
abline(CEOregres)

1Remember a similar object returned by t.test (Section 1.8.4). General lists were introduced in Section 1.2.6



86 2. The Simple Regression Model

Figure 2.1. OLS regression line for Example 2-3

0 10 20 30 40 50

0
10

00
30

00

roe

sa
la

ry

Wooldridge, Example 2.4: Wage and Education2.4

We are using the data set WAGE1.dta. We are interested in studying the relation between education
and wage, and our regression model is

wage = β0 + β1education+ u.

In Script 2.4 (Example-2-4.R), we analyze the data and find that the OLS regression line is

ŵage = −0.90 + 0.54 · education

One additional year of education is associated with an increase of the typical wage by about 54 cents
an hour.

Output of Script 2.4: Example-2-4.R

> data(wage1, package=’wooldridge’)

> # OLS regression:
> lm(wage ~ educ, data=wage1)

Call:
lm(formula = wage ~ educ, data = wage1)

Coefficients:
(Intercept) educ

-0.9049 0.5414



2.1. Simple OLS Regression 87

Wooldridge, Example 2.5: Voting Outcomes and Campaign Expenditures2.5

The data set VOTE1.dta contains information on campaign expenditures (shareA = share of campaign
spending in %) and election outcomes (voteA = share of vote in %). The regression model

voteA = β0 + β1shareA+ u.

is estimated in Script 2.5 (Example-2-5.R). The OLS regression line turns out to be

v̂oteA = 26.81 + 0.464 · shareA.

The scatter plot with the regression line generated in the code is shown in Figure 2.2

Output of Script 2.5: Example-2-5.R

> data(vote1, package=’wooldridge’)

> # OLS regression (parentheses for immediate output):
> ( VOTEres <- lm(voteA ~ shareA, data=vote1) )

Call:
lm(formula = voteA ~ shareA, data = vote1)

Coefficients:
(Intercept) shareA

26.8122 0.4638

> # scatter plot with regression line:
> with(vote1, plot(shareA, voteA))

> abline(VOTEres)

Figure 2.2. OLS regression line for Example 2-5

0 20 40 60 80 100

20
40

60
80

shareA

vo
te

A



88 2. The Simple Regression Model

2.2. Coefficients, Fitted Values, and Residuals

The object returned by lm contains all relevant information on the regression. Since the object is a
special kind of list, we can access the list elements just as those of a general list, see Section 1.2.6.
After defining the regression results object CEOregres in Script 2.3 (Example-2-3-3.R), we can
see the names of its components and access the first component coefficients with

> names(CEOregres)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

> CEOregres$coefficients
(Intercept) roe
963.19134 18.50119

Another way to interact with objects like this is through generic functions. They accept different
types of arguments and, depending on the type, give appropriate results. As an example, the number
of observations n is returned with nobs(myolsres) if the regression results are stored in the object
myolsres.

Obviously, we are interested in the OLS coefficients. As seen above, they can be obtained as
myolsres$coefficients. An alternative is the generic function coef(myolsres). The co-
efficient vector has names attached to its elements. The name of the intercept parameter β̂0 is
"(Intercept)" and the name of the slope parameter β̂1 is the variable name of the regressor
x. In this way, we can access the parameters separately by using either the position (1 or 2) or the
name as an index to the coefficients vector. For details, review Section 1.2.4 for a general discussion
of working with vectors.

Given these parameter estimates, calculating the predicted values ŷi and residuals ûi for each
observation i = 1, ..., n is easy:

ŷi = β̂0 + β̂1 · xi (2.5)
ûi = yi − ŷi (2.6)

If the values of the dependent and independent variables are stored in the vectors y and x, re-
spectively, we can estimate the model and do the calculations of these equations for all observations
jointly using the code

myolsres <- lm( y ~ x )
bhat <- coef(myolsres)
yhat <- bhat["(Intercept)"] + bhat["x"] * x
uhat <- y - yhat

We can also use a more black-box approach which will give exactly the same results using the
generic functions fitted and resid on the regression results object:

myolsres <- lm( y ~ x )
bhat <- coef(myolsres)
yhat <- fitted(myolsres)
uhat <- resid(myolsres)



2.2. Coefficients, Fitted Values, and Residuals 89

Wooldridge, Example 2.6: CEO Salary and Return on Equity2.6

We extend the regression example on the return on equity of a firm and the salary of its CEO in Script
2.6 (Example-2-6.R). After the OLS regression, we calculate fitted values and residuals. A table similar
to Wooldridge (2019, Table 2.2) is generated displaying the values for the first 15 observations.

Output of Script 2.6: Example-2-6.R

> data(ceosal1, package=’wooldridge’)

> # extract variables as vectors:
> sal <- ceosal1$salary

> roe <- ceosal1$roe

> # regression with vectors:
> CEOregres <- lm( sal ~ roe )

> # obtain predicted values and residuals
> sal.hat <- fitted(CEOregres)

> u.hat <- resid(CEOregres)

> # Wooldridge, Table 2.2:
> cbind(roe, sal, sal.hat, u.hat)[1:15,]

roe sal sal.hat u.hat
1 14.1 1095 1224.058 -129.058071
2 10.9 1001 1164.854 -163.854261
3 23.5 1122 1397.969 -275.969216
4 5.9 578 1072.348 -494.348338
5 13.8 1368 1218.508 149.492288
6 20.0 1145 1333.215 -188.215063
7 16.4 1078 1266.611 -188.610785
8 16.3 1094 1264.761 -170.760660
9 10.5 1237 1157.454 79.546207
10 26.3 833 1449.773 -616.772523
11 25.9 567 1442.372 -875.372056
12 26.8 933 1459.023 -526.023116
13 14.8 1339 1237.009 101.991102
14 22.3 937 1375.768 -438.767778
15 56.3 2011 2004.808 6.191886



90 2. The Simple Regression Model

Wooldridge (2019, Section 2.3) presents and discusses three properties of OLS statistics which we
will confirm for an example.

n

∑
i=1

ûi = 0 ⇒ ¯̂ui = 0 (2.7)

n

∑
i=1

xiûi = 0 ⇒ Cov(xi, ûi) = 0 (2.8)

ȳ = β̂0 + β̂1 · x̄ (2.9)

Wooldridge, Example 2.7: Wage and Education2.7

We already know the regression results when we regress wage on education from Example 2.4. In
Script 2.7 (Example-2-7.R), we calculate fitted values and residuals to confirm the three properties
from Equations 2.7 through 2.9. Note that R as many statistics programs does all calculations in “dou-
ble precision” implying that it is accurate for at least 15 significant digits. The output that checks the
first property shows that the average residual is -2.334967e-16 which in scientific notation means
−2.334967 · 10−16 = −0.0000000000000002334967. The reason it is not exactly equal to 0 is a rounding error
in the 16th digit. The same holds for the second property: The correlation between the regressor and
the residual is zero except for minimal rounding error. The third property is also confirmed: If we plug
the average value of the regressor into the regression line formula, we get the average value of the
dependent variable.

Output of Script 2.7: Example-2-7.R

> data(wage1, package=’wooldridge’)

> WAGEregres <- lm(wage ~ educ, data=wage1)

> # obtain coefficients, predicted values and residuals
> b.hat <- coef(WAGEregres)

> wage.hat <- fitted(WAGEregres)

> u.hat <- resid(WAGEregres)

> # Confirm property (1):
> mean(u.hat)
[1] -1.19498e-16

> # Confirm property (2):
> cor(wage1$educ , u.hat)
[1] 4.349557e-16

> # Confirm property (3):
> mean(wage1$wage)
[1] 5.896103

> b.hat[1] + b.hat[2] * mean(wage1$educ)
(Intercept)

5.896103



2.3. Goodness of Fit 91

2.3. Goodness of Fit

The total sum of squares (SST), explained sum of squares (SSE) and residual sum of squares (SSR)
can be written as

SST = ∑n
i=1(yi − y)2 = (n− 1) ·Var(y) (2.10)

SSE = ∑n
i=1(ŷi − y)2 = (n− 1) ·Var(ŷ) (2.11)

SSR = ∑n
i=1(ûi − 0)2 = (n− 1) ·Var(û) (2.12)

where Var(x) is the sample variance 1
n−1 ∑n

i=1(xi − x)2

Wooldridge (2019, Equation 2.38) defines the coefficient of determination in terms of these terms.
Because (n− 1) cancels out, it can be equivalently written as

R2 =
Var(ŷ)
Var(y)

= 1− Var(û)
Var(y)

(2.13)

Wooldridge, Example 2.8: CEO Salary and Return on Equity2.8

In the regression already studied in Example 2.6, the coefficient of determination is 0.0132. This is calcu-
lated in the two ways of Equation 2.13 in Script 2.8 (Example-2-8.R). In addition, it is calculated as the
squared correlation coefficient of y and ŷ. Not surprisingly, all versions of these calculations produce
the same result.

Output of Script 2.8: Example-2-8.R

> data(ceosal1, package=’wooldridge’)

> CEOregres <- lm( salary ~ roe, data=ceosal1 )

> # Calculate predicted values & residuals:
> sal.hat <- fitted(CEOregres)

> u.hat <- resid(CEOregres)

> # Calculate R^2 in three different ways:
> sal <- ceosal1$salary

> var(sal.hat) / var(sal)
[1] 0.01318862

> 1 - var(u.hat) / var(sal)
[1] 0.01318862

> cor(sal, sal.hat)^2
[1] 0.01318862

We have already come across the command summary as a generic function that produces appro-
priate summaries for very different types of objects. We can also use it to get many interesting results
for a regression. They are introduced one by one in the next sections. If the variable rres contains
a result from a regression, summary(rres) will display

• Some statistics for the residual like the extreme values and the median



92 2. The Simple Regression Model

• A coefficient table. So far, we only discussed the OLS coefficients shown in the first column.
The next columns will be introduced below.

• Some more information of which only R2 is of interest to us so far. It is reported as Multiple
R-squared.

Wooldridge, Example 2.9: Voting Outcomes and Campaign Expenditures2.9

We already know the OLS coefficients to be β̂0 = 26.8125 and β̂1 = 0.4638 in the voting example (Script
2.5 (Example-2-5.R)). These values are again found in the output of the regression summary in Script
2.9 (Example-2-9.R). The coefficient of determination is reported as Multiple R-squared to be R2 =
0.8561 . Reassuringly, we get the same numbers as with the pedestrian calculations.

Output of Script 2.9: Example-2-9.R

> data(vote1, package=’wooldridge’)

> VOTEres <- lm(voteA ~ shareA, data=vote1)

> # Summary of the regression results
> summary(VOTEres)

Call:
lm(formula = voteA ~ shareA, data = vote1)

Residuals:
Min 1Q Median 3Q Max

-16.8919 -4.0660 -0.1682 3.4965 29.9772

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.81221 0.88721 30.22 <2e-16 ***
shareA 0.46383 0.01454 31.90 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.385 on 171 degrees of freedom
Multiple R-squared: 0.8561, Adjusted R-squared: 0.8553
F-statistic: 1018 on 1 and 171 DF, p-value: < 2.2e-16

> # Calculate R^2 manually:
> var( fitted(VOTEres) ) / var( vote1$voteA )
[1] 0.8561409



2.4. Nonlinearities 93

2.4. Nonlinearities

For the estimation of logarithmic or semi-logarithmic models, the respective formula can be directly
entered into the specification of lm(...) as demonstrated in Examples 2.10 and 2.11. For the
interpretation as percentage effects and elasticities, see Wooldridge (2019, Section 2.4).

Wooldridge, Example 2.10: Wage and Education2.10

Compared to Example 2.7, we simply change the command for the estimation to account for a loga-
rithmic specification as shown in Script 2.10 (Example-2-10.R). The semi-logarithmic specification im-
plies that wages are higher by about 8.3% for individuals with an additional year of education.

Output of Script 2.10: Example-2-10.R

> data(wage1, package=’wooldridge’)

> # Estimate log-level model
> lm( log(wage) ~ educ, data=wage1 )

Call:
lm(formula = log(wage) ~ educ, data = wage1)

Coefficients:
(Intercept) educ

0.58377 0.08274

Wooldridge, Example 2.11: CEO Salary and Firm Sales2.11

We study the relationship between the sales of a firm and the salary of its CEO using a log-log specifi-
cation. The results are shown in Script 2.11 (Example-2-11.R). If the sales increase by 1%, the salary of
the CEO tends to increase by 0.257%.

Output of Script 2.11: Example-2-11.R

> data(ceosal1, package=’wooldridge’)

> # Estimate log-log model
> lm( log(salary) ~ log(sales), data=ceosal1 )

Call:
lm(formula = log(salary) ~ log(sales), data = ceosal1)

Coefficients:
(Intercept) log(sales)

4.8220 0.2567



94 2. The Simple Regression Model

2.5. Regression through the Origin and Regression on a
Constant

Wooldridge (2019, Section 2.6) discusses models without an intercept. This implies that the regres-
sion line is forced to go through the origin. In R, we can suppress the constant which is otherwise
implicitly added to a formula by specifying

lm(y ~ 0 + x)

instead of lm(y ~ x). The result is a model which only has a slope parameter.
Another topic discussed in this section is a linear regression model without a slope parameter, i.e.

with a constant only. In this case, the estimated constant will be the sample average of the dependent
variable. This can be implemented in R using the code

lm(y ~ 1)

Both special kinds of regressions are implemented in Script 2.12 (SLR-Origin-Const.R) for the
example of the CEO salary and ROE we already analyzed in Example 2.8 and others. The resulting
regression lines are plotted in Figure 2.3 which was generated using the last lines of code shown in
the output.

Output of Script 2.12: SLR-Origin-Const.R

> data(ceosal1, package=’wooldridge’)

> # Usual OLS regression:
> (reg1 <- lm( salary ~ roe, data=ceosal1))

Call:
lm(formula = salary ~ roe, data = ceosal1)

Coefficients:
(Intercept) roe

963.2 18.5

> # Regression without intercept (through origin):
> (reg2 <- lm( salary ~ 0 + roe, data=ceosal1))

Call:
lm(formula = salary ~ 0 + roe, data = ceosal1)

Coefficients:
roe

63.54

> # Regression without slope (on a constant):
> (reg3 <- lm( salary ~ 1 , data=ceosal1))



2.5. Regression through the Origin and Regression on a Constant 95

Call:
lm(formula = salary ~ 1, data = ceosal1)

Coefficients:
(Intercept)

1281

> # average y:
> mean(ceosal1$salary)
[1] 1281.12

> # Scatter Plot with all 3 regression lines
> plot(ceosal1$roe, ceosal1$salary, ylim=c(0,4000))

> abline(reg1, lwd=2, lty=1)

> abline(reg2, lwd=2, lty=2)

> abline(reg3, lwd=2, lty=3)

> legend("topleft",c("full","through origin","const only"),lwd=2,lty=1:3)

Figure 2.3. Regression through the Origin and on a Constant

0 10 20 30 40 50

0
10

00
30

00

ceosal1$roe

ce
os

al
1$

sa
la

ry

full
through origin
const only



96 2. The Simple Regression Model

2.6. Expected Values, Variances, and Standard Errors

Wooldridge (2019) discusses the role of five assumptions under which the OLS parameter estimators
have desirable properties. In short form they are

• SLR.1: Linear population regression function: y = β0 + β1x + u
• SLR.2: Random sampling of x and y from the population
• SLR.3: Variation in the sample values x1, ..., xn

• SLR.4: Zero conditional mean: E(u|x) = 0
• SLR.5: Homoscedasticity: Var(u|x) = σ2

Based on those, Wooldridge (2019) shows in Section 2.5:
• Theorem 2.1: Under SLR.1 – SLR.4, OLS parameter estimators are unbiased.
• Theorem 2.2: Under SLR.1 – SLR.5, OLS parameter estimators have a specific sampling vari-

ance.
Because the formulas for the sampling variance involve the variance of the error term, we also have
to estimate it using the unbiased estimator

σ̂2 =
1

n− 2
·

n

∑
i=1

û2
i =

n− 1
n− 2

·Var(ûi), (2.14)

where Var(ûi) =
1

n−1 ·∑
n
i=1 û2

i is the usual sample variance. We have to use the degrees-of-freedom
adjustment to account for the fact that we estimated the two parameters β̂0 and β̂1 for constructing
the residuals. Its square root σ̂ =

√
σ̂2 is called standard error of the regression (SER) by Wooldridge

(2019) and residual standard error by R.
The standard errors (SE) of the estimators are

se(β̂0) =

√
σ̂2x2

∑n
i=1(x− x)2 =

1√
n− 1

· σ̂

sd(x)
·
√

x2 (2.15)

se(β̂1) =

√
σ̂2

∑n
i=1(x− x)2 =

1√
n− 1

· σ̂

sd(x)
(2.16)

where sd(x) is the sample standard deviation
√

1
n−1 ·∑

n
i=1(xi − x)2.

In R, we can obviously do the calculations of Equations 2.14 through 2.16 explicitly. But the output
of the summary command for linear regression results which we already discovered in Section 2.3
already contains the results. We use the following example to calculate the results in both ways to
open the black box of the canned routine and convince ourselves that from now on we can rely on it.

Wooldridge, Example 2.12: Student Math Performance and the School Lunch
Program2.12

Using the data set MEAP93.dta, we regress a math performance score of schools on the share of stu-
dents eligible for a federally funded lunch program. Wooldridge (2019) uses this example to demon-
strate the importance of assumption SLR.4 and warns us against interpreting the regression results in a
causal way. Here, we merely use the example to demonstrate the calculation of standard errors.
Script 2.13 (Example-2-12.R) first calculates the SER manually using the fact that the residuals û are
available as resid(results), see Section 2.2. Then, the SE of the parameters are calculated ac-
cording to Equations 2.15 and 2.16, where the regressor is addressed as the variable in the data frame
df$lnchprg.



2.6. Expected Values, Variances, and Standard Errors 97

Finally, we see the output of the summary command. The SE of the parameters are reported in the
second column of the regression table, next to the parameter estimates. We will look at the other
columns in Chapter 4. The SER is reported as Residual standard error below the table. All three
values are exactly the same as the manual results.

Output of Script 2.13: Example-2-12.R

> data(meap93, package=’wooldridge’)

> # Estimate the model and save the results as "results"
> results <- lm(math10 ~ lnchprg, data=meap93)

> # Number of obs.
> ( n <- nobs(results) )
[1] 408

> # SER:
> (SER <- sd(resid(results)) * sqrt((n-1)/(n-2)) )
[1] 9.565938

> # SE of b0hat & b1hat, respectively:
> SER / sd(meap93$lnchprg) / sqrt(n-1) * sqrt(mean(meap93$lnchprg^2))
[1] 0.9975824

> SER / sd(meap93$lnchprg) / sqrt(n-1)
[1] 0.03483933

> # Automatic calculations:
> summary(results)

Call:
lm(formula = math10 ~ lnchprg, data = meap93)

Residuals:
Min 1Q Median 3Q Max

-24.386 -5.979 -1.207 4.865 45.845

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 32.14271 0.99758 32.221 <2e-16 ***
lnchprg -0.31886 0.03484 -9.152 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.566 on 406 degrees of freedom
Multiple R-squared: 0.171, Adjusted R-squared: 0.169
F-statistic: 83.77 on 1 and 406 DF, p-value: < 2.2e-16



98 2. The Simple Regression Model

2.7. Monte Carlo Simulations

In this section, we use Monte Carlo simulation experiments to revisit many of the topics covered
in this chapter. It can be skipped but can help quite a bit to grasp the concepts of estimators,
estimates, unbiasedness, the sampling variance of the estimators, and the consequences of violated
assumptions. Remember that the concept of Monte Carlo simulations was introduced in Section 1.10.

2.7.1. One sample

In Section 1.10, we used simulation experiments to analyze the features of a simple mean estimator.
We also discussed the sampling from a given distribution, the random seed and simple examples.
We can use exactly the same strategy to analyze OLS parameter estimators.

Script 2.14 (SLR-Sim-Sample.R) shows how to draw a sample which is consistent with Assump-
tions SLR.1 through SLR.5. We simulate a sample of size n = 1000 with population parameters
β0 = 1 and β1 = 0.5. We set the standard deviation of the error term u to σ = 2. Obviously, these
parameters can be freely chosen and every reader is strongly encouraged to play around.

Output of Script 2.14: SLR-Sim-Sample.R

> # Set the random seed
> set.seed(1234567)

> # set sample size
> n<-1000

> # set true parameters: betas and sd of u
> b0<-1; b1<-0.5; su<-2

> # Draw a sample of size n:
> x <- rnorm(n,4,1)

> u <- rnorm(n,0,su)

> y <- b0 + b1*x + u

> # estimate parameters by OLS
> (olsres <- lm(y~x))

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

1.2092 0.4384

> # features of the sample for the variance formula:
> mean(x^2)
[1] 16.96644

> sum((x-mean(x))^2)
[1] 990.4104

> # Graph
> plot(x, y, col="gray", xlim=c(0,8) )



2.7. Monte Carlo Simulations 99

> abline(b0,b1,lwd=2)

> abline(olsres,col="gray",lwd=2)

> legend("topleft",c("pop. regr. fct.","OLS regr. fct."),
> lwd=2,col=c("black","gray"))

Then a random sample of x and y is drawn in three steps:
• A sample of regressors x is drawn from an arbitrary distribution. The only thing we have to

make sure to stay consistent with Assumption SLR.3 is that its variance is strictly positive. We
choose a normal distribution with mean 4 and a standard deviation of 1.

• A sample of error terms u is drawn according to Assumptions SLR.4 and SLR.5: It has a mean
of zero, and both the mean and the variance are unrelated to x. We simply choose a normal
distribution with mean 0 and standard deviation σ = 2 for all 1000 observations independent
of x. In Sections 2.7.3 and 2.7.4 we will adjust this to simulate the effects of a violation of these
assumptions.

• Finally, we generate the dependent variable y according to the population regression function
specified in Assumption SLR.1.

In an empirical project, we only observe x and y and not the realizations of the error term u. In
the simulation, we “forget” them and the fact that we know the population parameters and estimate
them from our sample using OLS. As motivated in Section 1.10, this will help us to study the
behavior of the estimator in a sample like ours.

For our particular sample, the OLS parameter estimates are β̂0 = 1.2092 and β̂1 = 0.4384. The
result of the graph generated in the last four lines of Script 2.14 (SLR-Sim-Sample.R) is shown in
Figure 2.4. It shows the population regression function with intercept β0 = 1 and slope β1 = 0.5. It
also shows the scatter plot of the sample drawn from this population. This sample led to our OLS
regression line with intercept β̂0 = 1.2092 and slope β̂1 = 0.4384 shown in gray.

Figure 2.4. Simulated Sample and OLS Regression Line

0 2 4 6 8

−
2

0
2

4
6

8
10

x

y

pop. regr. fct.
OLS regr. fct.



100 2. The Simple Regression Model

Since the SLR assumptions hold in our exercise, Theorems 2.1 and 2.2 of Wooldridge (2019) should
apply. Theorem 2.1 implies for our model that the estimators are unbiased, i.e.

E(β̂0) = β0 = 1 E(β̂1) = β1 = 0.5

The estimates obtained from our sample are relatively close to their population values. Obviously,
we can never expect to hit the population parameter exactly. If we change the random seed by
specifying a different number in the first line of code of Script 2.14 (SLR-Sim-Sample.R), we get a
different sample and different parameter estimates.

Theorem 2.2 of Wooldridge (2019) states the sampling variance of the estimators conditional on
the sample values {x1, . . . , xn}. It involves the average squared value x2 = 16.966 and the sum of
squares ∑n

i−1(x− x)2 = 990.41 which we also know from the R output:

Var(β̂0) =
σ2x2

∑n
i=1(x− x)2 =

4 · 16.966
990.41

= 0.0685

Var(β̂1) =
σ2

∑n
i=1(x− x)2 =

4
990.41

= 0.0040

If Wooldridge (2019) is right, the standard error of β̂1 is
√

0.004 = 0.063. So getting an estimate of
β̂1 = 0.438 for one sample doesn’t seem unreasonable given β1 = 0.5.

2.7.2. Many Samples

Since the expected values and variances of our estimators are defined over separate random samples
from the same population, it makes sense for us to repeat our simulation exercise over many simu-
lated samples. Just as motivated in Section 1.10, the distribution of OLS parameter estimates across
these samples will correspond to the sampling distribution of the estimators.

Script 2.16 (SLR-Sim-Model-Condx.R) implements this with the same for loop we introduced
in Section 1.9.2 and already used for basic Monte Carlo simulations in Section 1.10.1. Remember
that R enthusiasts might choose a different technique but for us, this implementation has the big
advantage that it is very transparent. We analyze r = 10 000 samples.

Note that we use the same values for x in all samples since we draw them outside of the loop. We
do this to simulate the exact setup of Theorem 2.2 which reports the sampling variances conditional
on x. In a more realistic setup, we would sample x along with y. The conceptual difference is
subtle and the results hardly differ in reasonably large samples. We will come back to these issues
in Chapter 5.2

For each sample, we estimate our parameters and store them in the respective position j = 1, . . . , r
of the vectors b0hat and b1hat.

2In Script 2.15 (SLR-Sim-Model.R) shown on page 321, we implement the joint sampling from x and y. The results are
essentially the same.



2.7. Monte Carlo Simulations 101

Script 2.16: SLR-Sim-Model-Condx.R
# Set the random seed
set.seed(1234567)

# set sample size and number of simulations
n<-1000; r<-10000

# set true parameters: betas and sd of u
b0<-1; b1<-0.5; su<-2

# initialize b0hat and b1hat to store results later:
b0hat <- numeric(r)
b1hat <- numeric(r)

# Draw a sample of x, fixed over replications:
x <- rnorm(n,4,1)

# repeat r times:
for(j in 1:r) {

# Draw a sample of y:
u <- rnorm(n,0,su)
y <- b0 + b1*x + u

# estimate parameters by OLS and store them in the vectors
bhat <- coefficients( lm(y~x) )
b0hat[j] <- bhat["(Intercept)"]
b1hat[j] <- bhat["x"]

}

Script 2.17 (SLR-Sim-Results.R) gives descriptive statistics of the r = 10, 000 estimates we got
from our simulation exercise. Wooldridge (2019, Theorem 2.1) claims that the OLS estimators are
unbiased, so we should expect to get estimates which are very close to the respective population
parameters. This is clearly confirmed. The average value of β̂0 is very close to β0 = 1 and the
average value of β̂1 is very close to β1 = 0.5.

The simulated sampling variances are Ṽar(β̂0) = 0.069 and Ṽar(β̂1) = 0.004. Also these values are
very close to the ones we expected from Theorem 2.2. The last lines of the code produce Figure 2.5.
It shows the OLS regression lines for the first 10 simulated samples together with the population
regression function.



102 2. The Simple Regression Model

Output of Script 2.17: SLR-Sim-Results.R

> # MC estimate of the expected values:
> mean(b0hat)
[1] 0.9985388

> mean(b1hat)
[1] 0.5000466

> # MC estimate of the variances:
> var(b0hat)
[1] 0.0690833

> var(b1hat)
[1] 0.004069063

> # Initialize empty plot
> plot( NULL, xlim=c(0,8), ylim=c(0,6), xlab="x", ylab="y")

> # add OLS regression lines
> for (j in 1:10) abline(b0hat[j],b1hat[j],col="gray")

> # add population regression line
> abline(b0,b1,lwd=2)

> # add legend
> legend("topleft",c("Population","OLS regressions"),
> lwd=c(2,1),col=c("black","gray"))

Figure 2.5. Population and Simulated OLS Regression Lines

0 2 4 6 8

0
1

2
3

4
5

6

x

y

Population
OLS regressions



2.7. Monte Carlo Simulations 103

2.7.3. Violation of SLR.4

We will come back to a more systematic discussion of the consequences of violating the SLR assump-
tions below. At this point, we can already simulate the effects. In order to implement a violation of
SLR.4 (zero conditional mean), consider a case where in the population u is not mean independent
of x. A simple example is

E(u|x) = x− 4
5

.

What happens to our OLS estimator? Script 2.18 (SLR-Sim-ViolSLR4.R) implements a simulation
of this model and is listed in the appendix (p. 322). The only line of code we changed compared to
Script 2.16 (SLR-Sim-Model-Condx.R) is the sampling of u which now reads

u <- rnorm(n, (x-4)/5, su)

The simulation results are presented in the output of Script 2.19 (SLR-Sim-Results-ViolSLR4.R).
Obviously, the OLS coefficients are now biased: The average estimates are far from the population
parameters β0 = 1 and β1 = 0.5. This confirms that Assumption SLR.4 is required to hold for the
unbiasedness shown in Theorem 2.1.

Output of Script 2.19: SLR-Sim-Results-ViolSLR4.R

> # MC estimate of the expected values:
> mean(b0hat)
[1] 0.1985388

> mean(b1hat)
[1] 0.7000466

> # MC estimate of the variances:
> var(b0hat)
[1] 0.0690833

> var(b1hat)
[1] 0.004069063

2.7.4. Violation of SLR.5

Theorem 2.1 (unbiasedness) does not require Assumption SLR.5 (homoscedasticity), but Theorem
2.2 (sampling variance) does. As an example for a violation consider the population specification

Var(u|x) = 4
e4.5 · e

x,

so SLR.5 is clearly violated since the variance depends on x. We assume exogeneity, so assumption
SLR.4 holds. The factor in front ensures that the unconditional variance Var(u) = 4.3 Based on this
unconditional variance only, the sampling variance should not change compared to the results above
and we would still expect Var(β̂0) = 0.0685 and Var(β̂1) = 0.0040. But since Assumption SLR.5 is
violated, Theorem 2.2 is not applicable.

3Since x ∼ Normal(4, 1), ex is log-normally distributed and has a mean of e4.5.



104 2. The Simple Regression Model

Script 2.20 (SLR-Sim-ViolSLR5.R) implements a simulation of this model and is listed in the
appendix (p. 323). Here, we only had to change the line of code for the sampling of u to

varu <- 4/exp(4.5) * exp(x)
u <- rnorm(n, 0, sqrt(varu) )

Script 2.21 (SLR-Sim-Results-ViolSLR5.R) demonstrates two effects: The unbiasedness pro-
vided by Theorem 2.1 is unaffected, but the formula for sampling variance provided by Theorem 2.2
is incorrect.

Output of Script 2.21: SLR-Sim-Results-ViolSLR5.R

> # MC estimate of the expected values:
> mean(b0hat)
[1] 1.0019

> mean(b1hat)
[1] 0.4992376

> # MC estimate of the variances:
> var(b0hat)
[1] 0.08967037

> var(b1hat)
[1] 0.007264373



3. Multiple Regression Analysis: Estimation
Running a multiple regression in R is as straightforward as running a simple regression using the
lm command. Section 3.1 shows how it is done. Section 3.2 opens the black box and replicates the
main calculations using matrix algebra. This is not required for the remaining chapters, so it can be
skipped by readers who prefer to keep black boxes closed.

Section 3.3 should not be skipped since it discusses the interpretation of regression results and the
prevalent omitted variables problems. Finally, Section 3.4 covers standard errors and multicollinear-
ity for multiple regression.

3.1. Multiple Regression in Practice

Consider the population regression model

y = β0 + β1x1 + β2x2 + β3x3 + · · ·+ βkxk + u (3.1)

and suppose the variables y, x1, x2, x3, ... contain the respective data of our sample. We estimate
the model parameters by OLS using the command

lm(y ~ x1+x2+x3+...)

The tilde ~ again separates the dependent variable from the regressors which are now separated
using a + sign. We can add options as before. For example if the data are contained in a data frame
df, we should add the option “data=df”. The constant is again automatically added unless it is
explicitly suppressed using lm(y ~ 0+x1+x2+x3+...).

We are already familiar with the workings of lm: The command creates an object which contains
all relevant information. A simple call like the one shown above will only display the parameter esti-
mates. We can store the estimation results in a variable myres using the code myres <- lm(...)
and then use this variable for further analyses. For a typical regression output including a coefficient
table, call summary(myres). Of course if this is all we want, we can leave out storing the result and
simply call summary( lm(...) ) in one step. Further analyses involving residuals, fitted values
and the like can be used exactly as presented in Chapter 2.

The output of summary includes parameter estimates, standard errors according to Theorem 3.2
of Wooldridge (2019), the coefficient of determination R2, and many more useful results we cannot
interpret yet before we have worked through Chapter 4.

Wooldridge, Example 3.1: Determinants of College GPA3.1

This example from Wooldridge (2019) relates the college GPA (colGPA) to the high school GPA (hsGPA)
and achievement test score (ACT) for a sample of 141 students. The commands and results can be
found in Script 3.1 (Example-3-1.R). The OLS regression function is

̂colGPA = 1.286 + 0.453 · hsGPA+ 0.0094 · ACT.



106 3. Multiple Regression Analysis: Estimation

Output of Script 3.1: Example-3-1.R

> data(gpa1, package=’wooldridge’)

> # Just obtain parameter estimates:
> lm(colGPA ~ hsGPA+ACT, data=gpa1)

Call:
lm(formula = colGPA ~ hsGPA + ACT, data = gpa1)

Coefficients:
(Intercept) hsGPA ACT

1.286328 0.453456 0.009426

> # Store results under "GPAres" and display full table:
> GPAres <- lm(colGPA ~ hsGPA+ACT, data=gpa1)

> summary(GPAres)

Call:
lm(formula = colGPA ~ hsGPA + ACT, data = gpa1)

Residuals:
Min 1Q Median 3Q Max

-0.85442 -0.24666 -0.02614 0.28127 0.85357

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.286328 0.340822 3.774 0.000238 ***
hsGPA 0.453456 0.095813 4.733 5.42e-06 ***
ACT 0.009426 0.010777 0.875 0.383297
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3403 on 138 degrees of freedom
Multiple R-squared: 0.1764, Adjusted R-squared: 0.1645
F-statistic: 14.78 on 2 and 138 DF, p-value: 1.526e-06

Wooldridge, Example 3.4: Determinants of College GPA3.4

For the regression run in Example 3.1, the output of Script 3.1 (Example-3-1.R) reports R2 = 0.1764, so
about 17.6% of the variance in college GPA are explained by the two regressors.

Examples 3.2, 3.3, 3.5, 3.6: Further multiple regression examples
In order to get a feeling of the methods and results, we present the analyses including

the full regression tables of the mentioned Examples from Wooldridge (2019) in Scripts 3.2
(Example-3-2.R) through 3.5 (Example-3-6.R). See Wooldridge (2019) for descriptions of
the data sets and variables and for comments on the results.

Output of Script 3.2: Example-3-2.R

> data(wage1, package=’wooldridge’)



3.1. Multiple Regression in Practice 107

> # OLS regression:
> summary( lm(log(wage) ~ educ+exper+tenure, data=wage1) )

Call:
lm(formula = log(wage) ~ educ + exper + tenure, data = wage1)

Residuals:
Min 1Q Median 3Q Max

-2.05802 -0.29645 -0.03265 0.28788 1.42809

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.284360 0.104190 2.729 0.00656 **
educ 0.092029 0.007330 12.555 < 2e-16 ***
exper 0.004121 0.001723 2.391 0.01714 *
tenure 0.022067 0.003094 7.133 3.29e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4409 on 522 degrees of freedom
Multiple R-squared: 0.316, Adjusted R-squared: 0.3121
F-statistic: 80.39 on 3 and 522 DF, p-value: < 2.2e-16

Output of Script 3.3: Example-3-3.R

> data(k401k, package=’wooldridge’)

> # OLS regression:
> summary( lm(prate ~ mrate+age, data=k401k) )

Call:
lm(formula = prate ~ mrate + age, data = k401k)

Residuals:
Min 1Q Median 3Q Max

-81.162 -8.067 4.787 12.474 18.256

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 80.1191 0.7790 102.85 < 2e-16 ***
mrate 5.5213 0.5259 10.50 < 2e-16 ***
age 0.2432 0.0447 5.44 6.21e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.94 on 1531 degrees of freedom
Multiple R-squared: 0.09225, Adjusted R-squared: 0.09106
F-statistic: 77.79 on 2 and 1531 DF, p-value: < 2.2e-16

Output of Script 3.4: Example-3-5.R

> data(crime1, package=’wooldridge’)

> # Model without avgsen:



108 3. Multiple Regression Analysis: Estimation

> summary( lm(narr86 ~ pcnv+ptime86+qemp86, data=crime1) )

Call:
lm(formula = narr86 ~ pcnv + ptime86 + qemp86, data = crime1)

Residuals:
Min 1Q Median 3Q Max

-0.7118 -0.4031 -0.2953 0.3452 11.4358

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.711772 0.033007 21.565 < 2e-16 ***
pcnv -0.149927 0.040865 -3.669 0.000248 ***
ptime86 -0.034420 0.008591 -4.007 6.33e-05 ***
qemp86 -0.104113 0.010388 -10.023 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8416 on 2721 degrees of freedom
Multiple R-squared: 0.04132, Adjusted R-squared: 0.04027
F-statistic: 39.1 on 3 and 2721 DF, p-value: < 2.2e-16

> # Model with avgsen:
> summary( lm(narr86 ~ pcnv+avgsen+ptime86+qemp86, data=crime1) )

Call:
lm(formula = narr86 ~ pcnv + avgsen + ptime86 + qemp86, data = crime1)

Residuals:
Min 1Q Median 3Q Max

-0.9330 -0.4247 -0.2934 0.3506 11.4403

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.706756 0.033151 21.319 < 2e-16 ***
pcnv -0.150832 0.040858 -3.692 0.000227 ***
avgsen 0.007443 0.004734 1.572 0.115993
ptime86 -0.037391 0.008794 -4.252 2.19e-05 ***
qemp86 -0.103341 0.010396 -9.940 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8414 on 2720 degrees of freedom
Multiple R-squared: 0.04219, Adjusted R-squared: 0.04079
F-statistic: 29.96 on 4 and 2720 DF, p-value: < 2.2e-16



3.2. OLS in Matrix Form 109

Output of Script 3.5: Example-3-6.R

> data(wage1, package=’wooldridge’)

> # OLS regression:
> summary( lm(log(wage) ~ educ, data=wage1) )

Call:
lm(formula = log(wage) ~ educ, data = wage1)

Residuals:
Min 1Q Median 3Q Max

-2.21158 -0.36393 -0.07263 0.29712 1.52339

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.583773 0.097336 5.998 3.74e-09 ***
educ 0.082744 0.007567 10.935 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4801 on 524 degrees of freedom
Multiple R-squared: 0.1858, Adjusted R-squared: 0.1843
F-statistic: 119.6 on 1 and 524 DF, p-value: < 2.2e-16

3.2. OLS in Matrix Form

For applying regression methods to empirical problems, we do not actually need to know the for-
mulas our software uses. In multiple regression, we need to resort to matrix algebra in order to find
an explicit expression for the OLS parameter estimates. Wooldridge (2019) defers this discussion to
Appendix E and we follow the notation used there. Going through this material is not required for
applying multiple regression to real-world problems but is useful for a deeper understanding of the
methods and their black-box implementations in software packages. In the following chapters, we
will rely on the comfort of the canned routine lm, so this section may be skipped.

In matrix form, we store the regressors in a n × (k + 1) matrix X which has a column for
each regressor plus a column of ones for the constant. The sample values of the dependent
variable are stored in a n × 1 column vector y. Wooldridge (2019) derives the OLS estimator
β̂ = (β̂0, β̂1, β̂2, . . . , β̂k)

′ to be

β̂ = (X′X)−1X′y. (3.2)

This equation involves three matrix operations which we know how to implement in R from Section
1.2.5:

• Transpose: The expression X′ is t(X) in R
• Matrix multiplication: The expression X′X is translated as t(X)%*%X
• Inverse: (X′X)−1 is written as solve( t(X)%*%X )

So we can collect everything and translate Equation 3.2 into the somewhat unsightly expression

bhat <- solve( t(X)%*%X ) %*% t(X)%*%y



110 3. Multiple Regression Analysis: Estimation

The vector of residuals can be manually calculated as

û = y− Xβ̂ (3.3)

or translated into the R matrix language

uhat <- y - X %*% bhat

The formula for the estimated variance of the error term is

σ̂2 = 1
n−k−1 û′û (3.4)

which is equivalent to sigsqhat <- t(uhat) %*% uhat / (n-k-1). For technical reasons, it
will be convenient to have this variable as a scalar instead of a 1× 1 matrix, so we put this expression
into the as.numeric function in our actual implementation:

sigsqhat <- as.numeric( t(uhat) %*% uhat / (n-k-1) )

The standard error of the regression (SER) is its square root σ̂ =
√

σ̂2. The estimated OLS variance-
covariance matrix according to Wooldridge (2019, Theorem E.2) is then

V̂ar(β̂) = σ̂2(X′X)−1 (3.5)

Vbetahat <- sigsqhat * solve( t(X)%*%X )

Finally, the standard errors of the parameter estimates are the square roots of the main diagonal of
Var(β̂) which can be expressed in R as

se <- sqrt( diag(Vbetahat) )

Script 3.6 (OLS-Matrices.R) implements this for the GPA regression from Example 3.1. Com-
paring the results to the built-in function (see Script 3.1 (Example-3-1.R)), it is reassuring that we
get exactly the same numbers for the parameter estimates, SER (“Residual standard error”),
and standard errors of the coefficients.

Output of Script 3.6: OLS-Matrices.R

> data(gpa1, package=’wooldridge’)

> # Determine sample size & no. of regressors:
> n <- nrow(gpa1); k<-2

> # extract y
> y <- gpa1$colGPA

> # extract X & add a column of ones
> X <- cbind(1, gpa1$hsGPA, gpa1$ACT)

> # Display first rows of X:
> head(X)

[,1] [,2] [,3]
[1,] 1 3.0 21
[2,] 1 3.2 24
[3,] 1 3.6 26



3.3. Ceteris Paribus Interpretation and Omitted Variable Bias 111

[4,] 1 3.5 27
[5,] 1 3.9 28
[6,] 1 3.4 25

> # Parameter estimates:
> ( bhat <- solve( t(X)%*%X ) %*% t(X)%*%y )

[,1]
[1,] 1.286327767
[2,] 0.453455885
[3,] 0.009426012

> # Residuals, estimated variance of u and SER:
> uhat <- y - X %*% bhat

> sigsqhat <- as.numeric( t(uhat) %*% uhat / (n-k-1) )

> ( SER <- sqrt(sigsqhat) )
[1] 0.3403158

> # Estimated variance of the parameter estimators and SE:
> Vbetahat <- sigsqhat * solve( t(X)%*%X )

> ( se <- sqrt( diag(Vbetahat) ) )
[1] 0.34082212 0.09581292 0.01077719

3.3. Ceteris Paribus Interpretation and Omitted Variable Bias

The parameters in a multiple regression can be interpreted as partial effects. In a general model with
k regressors, the estimated slope parameter β j associated with variable xj is the change of ŷ as xj
increases by one unit and the other variables are held fixed.

Wooldridge (2019) discusses this interpretation in Section 3.2 and offers a useful formula for in-
terpreting the difference between simple regression results and this ceteris paribus interpretation of
multiple regression: Consider a regression with two explanatory variables:

ŷ = β̂0 + β̂1x1 + β̂2x2 (3.6)

The parameter β̂1 is the estimated effect of increasing x1 by one unit while keeping x2 fixed. In
contrast, consider the simple regression including only x1 as a regressor:

ỹ = β̃0 + β̃1x1. (3.7)

The parameter β̃1 is the estimated effect of increasing x1 by one unit (and NOT keeping x2 fixed). It
can be related to β̂1 using the formula

β̃1 = β̂1 + β̂2δ̃1 (3.8)

where δ̃1 is the slope parameter of the linear regression of x2 on x1

x2 = δ̃0 + δ̃1x1. (3.9)

This equation is actually quite intuitive: As x1 increases by one unit,
• Predicted y directly increases by β̂1 units (ceteris paribus effect, Equ. 3.6).
• Predicted x2 increases by δ̃1 units (see Equ. 3.9).



112 3. Multiple Regression Analysis: Estimation

• Each of these δ̃1 units leads to an increase of predicted y by β̂2 units, giving a total indirect
effect of δ̃1 β̂2 (see again Equ. 3.6)

• The overall effect β̃1 is the sum of the direct and indirect effects (see Equ. 3.8).
We revisit Example 3.1 to see whether we can demonstrate equation 3.8 in R. Script 3.7

(Omitted-Vars.R) repeats the regression of the college GPA (colGPA) on the achievement test
score (ACT) and the high school GPA (hsGPA). We study the ceteris paribus effect of ACT on colGPA
which has an estimated value of β̂1 = 0.0094. The estimated effect of hsGPA is β̂2 = 0.453. The slope
parameter of the regression corresponding to Eq. 3.9 is δ̃1 = 0.0389. Plugging these values into Equ.
3.8 gives a total effect of β̃1 = 0.0271 which is exactly what the simple regression at the end of the
output delivers.

Output of Script 3.7: Omitted-Vars.R

> data(gpa1, package=’wooldridge’)

> # Parameter estimates for full and simple model:
> beta.hat <- coef( lm(colGPA ~ ACT+hsGPA, data=gpa1) )

> beta.hat
(Intercept) ACT hsGPA
1.286327767 0.009426012 0.453455885

> # Relation between regressors:
> delta.tilde <- coef( lm(hsGPA ~ ACT, data=gpa1) )

> delta.tilde
(Intercept) ACT
2.46253658 0.03889675

> # Omitted variables formula for beta1.tilde:
> beta.hat["ACT"] + beta.hat["hsGPA"]*delta.tilde["ACT"]

ACT
0.02706397

> # Actual regression with hsGPA omitted:
> lm(colGPA ~ ACT, data=gpa1)

Call:
lm(formula = colGPA ~ ACT, data = gpa1)

Coefficients:
(Intercept) ACT

2.40298 0.02706

In this example, the indirect effect is actually stronger than the direct effect. ACT predicts colGPA
mainly because it is related to hsGPA which in turn is strongly related to colGPA.

These relations hold for the estimates from a given sample. In Section 3.3, Wooldridge (2019)
discusses how to apply the same sort of arguments to the OLS estimators which are random variables
varying over different samples. Omitting relevant regressors causes bias if we are interested in
estimating partial effects. In practice, it is difficult to include all relevant regressors making of
omitted variables a prevalent problem. It is important enough to have motivated a vast amount
of methodological and applied research. More advanced techniques like instrumental variables or
panel data methods try to solve the problem in cases where we cannot add all relevant regressors,
for example because they are unobservable. We will come back to this in Part 3.



3.4. Standard Errors, Multicollinearity, and VIF 113

3.4. Standard Errors, Multicollinearity, and VIF

We have already seen the matrix formula for the conditional variance-covariance matrix under the
usual assumptions including homoscedasticity (MLR.5) in Equation 3.5. Theorem 3.2 provides an-
other useful formula for the variance of a single parameter β j, i.e. for a single element on the main
diagonal of the variance-covariance matrix:

Var(β̂ j) =
σ2

SSTj(1− R2
j )

=
1
n
· σ2

Var(xj)
· 1

1− R2
j

, (3.10)

where SSTj = ∑n
i=1(xji − xj)

2 = (n − 1) · Var(xj) is the total sum of squares and R2
j is the usual

coefficient of determination from a regression of xj on all of the other regressors.1

The variance of β̂ j consists of four parts:

• 1
n : The variance is smaller for larger samples.

• σ2: The variance is larger if the error term varies a lot, since it introduces randomness into the
relationship between the variables of interest.

• 1
Var(xj)

: The variance is smaller if the regressor xj varies a lot since this provides relevant

information about the relationship.
• 1

1−R2
j
: This variance inflation factor (VIF) accounts for (imperfect) multicollinearity. If xj is

highly related to the other regressors, R2
j and therefore also VIFj and the variance of β̂ j are

large.
Since the error variance σ2 is unknown, we replace it with an estimate to come up with an esti-

mated variance of the parameter estimate. Its square root is the standard error

se(β̂ j) =
1√
n
· σ̂

sd(xj)
· 1√

1− R2
j

. (3.11)

It is not directly obvious that this formula leads to the same results as the matrix formula in
Equation 3.5. We will validate this formula by replicating Example 3.1 which we also used for
manually calculating the SE using the matrix formula above. The calculations are shown in Script
3.8 (MLR-SE.R).

We also use this example to demonstrate how to extract results which are reported by the summary
of the lm results. Given its results are stored in variable sures using the results of sures
<- summary(lm(...)), we can easily access the results using sures$resultname where the
resultname can be any of the following:

• coefficients for a matrix of the regression table (including coefficients, SE, ...)
• residuals for a vector of residuals
• sigma for the SER
• r.squared for R2

• and more.2

1Note that here, we use the population variance formula Var(xj) =
1
n ∑n

i=1(xji − xj)
2

2As with any other list, a full listing of result names can again be obtained by names(sures) if sures stores the results.



114 3. Multiple Regression Analysis: Estimation

Output of Script 3.8: MLR-SE.R

> data(gpa1, package=’wooldridge’)

> # Full estimation results including automatic SE :
> res <- lm(colGPA ~ hsGPA+ACT, data=gpa1)

> summary(res)

Call:
lm(formula = colGPA ~ hsGPA + ACT, data = gpa1)

Residuals:
Min 1Q Median 3Q Max

-0.85442 -0.24666 -0.02614 0.28127 0.85357

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.286328 0.340822 3.774 0.000238 ***
hsGPA 0.453456 0.095813 4.733 5.42e-06 ***
ACT 0.009426 0.010777 0.875 0.383297
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3403 on 138 degrees of freedom
Multiple R-squared: 0.1764, Adjusted R-squared: 0.1645
F-statistic: 14.78 on 2 and 138 DF, p-value: 1.526e-06

> # Extract SER (instead of calculation via residuals)
> ( SER <- summary(res)$sigma )
[1] 0.3403158

> # regressing hsGPA on ACT for calculation of R2 & VIF
> ( R2.hsGPA <- summary( lm(hsGPA~ACT, data=gpa1) )$r.squared )
[1] 0.1195815

> ( VIF.hsGPA <- 1/(1-R2.hsGPA) )
[1] 1.135823

> # manual calculation of SE of hsGPA coefficient:
> n <- nobs(res)

> sdx <- sd(gpa1$hsGPA) * sqrt((n-1)/n) # (Note: sd() uses the (n-1) version)

> ( SE.hsGPA <- 1/sqrt(n) * SER/sdx * sqrt(VIF.hsGPA) )
[1] 0.09581292

This is used in Script 3.8 (MLR-SE.R) to extract the SER of the main regression and the R2
j from

the regression of hsGPA on ACT which is needed for calculating the VIF for the coefficient of hsGPA.3

The other ingredients of formula 3.11 are straightforward. The standard error calculated this way
is exactly the same as the one of the built-in command and the matrix formula used in Script 3.6
(OLS-Matrices.R).

3We could have calculated these values manually like in Scripts 2.8 (Example-2-8.R), 2.13 (Example-2-12.R) or 3.6
(OLS-Matrices.R).



3.4. Standard Errors, Multicollinearity, and VIF 115

A convenient way to automatically calculate variance inflation factors (VIF) is provided by the
package car. Remember from Section 1.1.3 that in order to use this package, we have to install it
once per computer using install.packages("car"). Then we can load it with the command
library(car). Among other useful tools, this package implements the command vif(lmres)
where lmres is a regression result from lm. It delivers a vector of VIF for each of the regressors as
demonstrated in Script 3.9 (MLR-VIF.R).

We extend Example 3.6. and regress individual log wage on education (educ), potential overall
work experience (exper), and the number of years with current employer (tenure). We could
imagine that these three variables are correlated with each other, but the results show no big VIF.
The largest one is for the coefficient of exper. Its variance is higher by a factor of (only) 1.478 than
in a world in which it were uncorrelated with the other regressors. So we don’t have to worry about
multicollinearity here.

Output of Script 3.9: MLR-VIF.R

> data(wage1, package=’wooldridge’)

> # OLS regression:
> lmres <- lm(log(wage) ~ educ+exper+tenure, data=wage1)

> # Regression output:
> summary(lmres)

Call:
lm(formula = log(wage) ~ educ + exper + tenure, data = wage1)

Residuals:
Min 1Q Median 3Q Max

-2.05802 -0.29645 -0.03265 0.28788 1.42809

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.284360 0.104190 2.729 0.00656 **
educ 0.092029 0.007330 12.555 < 2e-16 ***
exper 0.004121 0.001723 2.391 0.01714 *
tenure 0.022067 0.003094 7.133 3.29e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4409 on 522 degrees of freedom
Multiple R-squared: 0.316, Adjusted R-squared: 0.3121
F-statistic: 80.39 on 3 and 522 DF, p-value: < 2.2e-16

> # Load package "car" (has to be installed):
> library(car)

> # Automatically calculate VIF :
> vif(lmres)

educ exper tenure
1.112771 1.477618 1.349296





4. Multiple Regression Analysis: Inference

Section 4.1 of Wooldridge (2019) adds assumption MLR.6 (normal distribution of the error term)
to the previous assumptions MLR.1 through MLR.5. Together, these assumptions constitute the
classical linear model (CLM).

The main additional result we get from this assumption is stated in Theorem 4.1: The OLS param-
eter estimators are normally distributed (conditional on the regressors x1, ..., xk). The benefit of this
result is that it allows us to do statistical inference similar to the approaches discussed in Section 1.8
for the simple estimator of the mean of a normally distributed random variable.

4.1. The t Test

After the sign and magnitude of the estimated parameters, empirical research typically pays most
attention to the results of t tests discussed in this section.

4.1.1. General Setup

An important type of hypotheses we are often interested in is of the form

H0 : β j = aj, (4.1)

where aj is some given number, very often aj = 0. For the most common case of two-tailed tests, the
alternative hypothesis is

H1 : β j 6= aj, (4.2)

and for one-tailed tests it is either one of

H1 : β j < aj or H1 : β j > aj. (4.3)

These hypotheses can be conveniently tested using a t test which is based on the test statistic

t =
β̂ j − aj

se(β̂ j)
. (4.4)

If H0 is in fact true and the CLM assumptions hold, then this statistic has a t distribution with
n− k− 1 degrees of freedom.



118 4. Multiple Regression Analysis: Inference

4.1.2. Standard case

Very often, we want to test whether there is any relation at all between the dependent variable y and
a regressor xj and do not want to impose a sign on the partial effect a priori. This is a mission for the
standard two-sided t test with the hypothetical value aj = 0, so

H0 : β j = 0, H1 : β j 6= 0, (4.5)

tβ̂ j
=

β̂ j

se(β̂ j)
(4.6)

The subscript on the t statistic indicates that this is “the” t value for β̂ j for this frequent version
of the test. Under H0, it has the t distribution with n − k − 1 degrees of freedom implying that
the probability that |tβ̂ j

| > c is equal to α if c is the 1− α
2 quantile of this distribution. If α is our

significance level (e.g. α = 5%), then we

reject H0 if |tβ̂ j
| > c

in our sample. For the typical significance level α = 5%, the critical value c will be around 2 for
reasonably large degrees of freedom and approach the counterpart of 1.96 from the standard normal
distribution in very large samples.

The p value indicates the smallest value of the significance level α for which we would still reject H0
using our sample. So it is the probability for a random variable T with the respective t distribution
that |T| > |tβ̂ j

| where tβ̂ j
is the value of the t statistic in our particular sample. In our two-tailed test,

it can be calculated as
pβ̂ j

= 2 · Ftn−k−1(−|tβ̂ j
|), (4.7)

where Ftn−k−1(·) is the cdf of the t distribution with n− k− 1 degrees of freedom. If our software
provides us with the relevant p values, they are easy to use: We

reject H0 if pβ̂ j
≤ α.

Since this standard case of a t test is so common, R provides us with the relevant t and p values
directly in the summary of the estimation results we already saw in the previous chapter. The
regression table includes for all regressors and the intercept

• Parameter estimates and standard errors, see Section 3.1.
• The test statistics tβ̂ j

from Equation 4.6 in the column t value

• The respective p values pβ̂ j
from Equation 4.7 in the column Pr(>|t|)

• Symbols to quickly see the range of the p value where for example “***” implies 0 < pβ̂ j
≤

0.001 and “*” implies 0.01 < pβ̂ j
≤ 0.05. The meaning of all symbols can be seen in the legend

below the table.



4.1. The t Test 119

Wooldridge, Example 4.3: Determinants of College GPA4.3

We have repeatedly used the data set GPA1.dta in Chapter 3. This example uses three regressors and
estimates a regression model of the form

colGPA = β0 + β1 · hsGPA+ β2 · ACT+ β3 · skipped+ u

For the critical values of the t tests, using the normal approximation instead of the exact t distribution
with n− k− 1 = 137 d.f. doesn’t make much of a difference:

> # CV for alpha=5% and 1% using the t distribution with 137 d.f.:
> alpha <- c(0.05, 0.01)

> qt(1-alpha/2, 137)
[1] 1.977431 2.612192

> # Critical values for alpha=5% and 1% using the normal approximation:
> qnorm(1-alpha/2)
[1] 1.959964 2.575829

Script 4.1 (Example-4-3.R) presents the standard summary which directly contains all the
information to test the hypotheses in Equation 4.5 for all parameters. The t statistics for all
coefficients except β2 are larger in absolute value than the critical value c = 2.61 (or c = 2.58
using the normal approximation) for α = 1%. So we would reject H0 for all usual significance
levels. By construction, we draw the same conclusions from the p values (or the symbols next
to it).
In order to confirm that R is exactly using the formulas of Wooldridge (2019), we next
reconstruct the t and p values manually. The whole regression table is stored as
sumres$coefficients, where sumres contains the summary results, see Section 3.4.
We extract the first two columns of it as the coefficients and standard errors, respectively.
Then we simply apply Equations 4.6 and 4.7.

Output of Script 4.1: Example-4-3.R

> data(gpa1, package=’wooldridge’)

> # Store results under "sumres" and display full table:
> ( sumres <- summary( lm(colGPA ~ hsGPA+ACT+skipped, data=gpa1) ) )

Call:
lm(formula = colGPA ~ hsGPA + ACT + skipped, data = gpa1)

Residuals:
Min 1Q Median 3Q Max

-0.85698 -0.23200 -0.03935 0.24816 0.81657

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.38955 0.33155 4.191 4.95e-05 ***
hsGPA 0.41182 0.09367 4.396 2.19e-05 ***
ACT 0.01472 0.01056 1.393 0.16578
skipped -0.08311 0.02600 -3.197 0.00173 **
---



120 4. Multiple Regression Analysis: Inference

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3295 on 137 degrees of freedom
Multiple R-squared: 0.2336, Adjusted R-squared: 0.2168
F-statistic: 13.92 on 3 and 137 DF, p-value: 5.653e-08

> # Manually confirm the formulas: Extract coefficients and SE
> regtable <- sumres$coefficients

> bhat <- regtable[,1]

> se <- regtable[,2]

> # Reproduce t statistic
> ( tstat <- bhat / se )
(Intercept) hsGPA ACT skipped

4.191039 4.396260 1.393319 -3.196840

> # Reproduce p value
> ( pval <- 2*pt(-abs(tstat),137) )
(Intercept) hsGPA ACT skipped

4.950269e-05 2.192050e-05 1.657799e-01 1.725431e-03

4.1.3. Other hypotheses

For a one-tailed test, the critical value c of the t test and the p values have to be adjusted appropriately.
Wooldridge (2019) provides a general discussion in Section 4.2. For testing the null hypothesis
H0 : β j = aj, the tests for the three common alternative hypotheses are summarized in Table 4.1:

Table 4.1. One- and two-tailed t Tests for H0 : β j = aj

H1 : β j 6= aj β j > aj β j < aj
c=quantile 1− α

2 1− α 1− α
reject H0 if |tβ̂ j

| > c tβ̂ j
> c tβ̂ j

< −c
p value 2 · Ftn−k−1(−|tβ̂ j

|) Ftn−k−1(−tβ̂ j
) Ftn−k−1(tβ̂ j

)

Given the standard regression output like the one in Script 4.1 (Example-4-3.R) including the p
value for two-sided tests pβ̂ j

, we can easily do one-sided t tests for the null hypothesis H0 : β j = 0 in
two steps:

• Is β̂ j positive (if H1 : β j > 0) or negative (if H1 : β j < 0)?
– No→ do not reject H0 since this cannot be evidence against H0.
– Yes→ The relevant p value is half of the reported pβ̂ j

.

⇒ Reject H0 if p = 1
2 pβ̂ j

< α.



4.1. The t Test 121

Wooldridge, Example 4.1: Hourly Wage Equation4.1

We have already estimated the wage equation

log(wage) = β0 + β1 · educ+ β2 · exper+ β3 · tenure+ u

in Example 3.2. Now we are ready to test H0 : β2 = 0 against H1 : β2 > 0. For the critical values of the t
tests, using the normal approximation instead of the exact t distribution with n− k− 1 = 522 d.f. doesn’t
make any relevant difference:

> # CV for alpha=5% and 1% using the t distribution with 522 d.f.:
> alpha <- c(0.05, 0.01)

> qt(1-alpha, 522)
[1] 1.647778 2.333513

> # Critical values for alpha=5% and 1% using the normal approximation:
> qnorm(1-alpha)
[1] 1.644854 2.326348

Script 4.2 (Example-4-1.R) shows the standard regression output. The reported t statistic for
the parameter of exper is tβ̂2

= 2.391 which is larger than the critical value c = 2.33 for the
significance level α = 1%, so we reject H0. By construction, we get the same answer from
looking at the p value. Like always, the reported pβ̂ j

value is for a two-sided test, so we have

to divide it by 2. The resulting value p = 0.01714
2 = 0.00857 < 0.01, so we reject H0 using an

α = 1% significance level.

Output of Script 4.2: Example-4-1.R

> data(wage1, package=’wooldridge’)

> # OLS regression:
> summary( lm(log(wage) ~ educ+exper+tenure, data=wage1) )

Call:
lm(formula = log(wage) ~ educ + exper + tenure, data = wage1)

Residuals:
Min 1Q Median 3Q Max

-2.05802 -0.29645 -0.03265 0.28788 1.42809

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.284360 0.104190 2.729 0.00656 **
educ 0.092029 0.007330 12.555 < 2e-16 ***
exper 0.004121 0.001723 2.391 0.01714 *
tenure 0.022067 0.003094 7.133 3.29e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4409 on 522 degrees of freedom
Multiple R-squared: 0.316, Adjusted R-squared: 0.3121
F-statistic: 80.39 on 3 and 522 DF, p-value: < 2.2e-16



122 4. Multiple Regression Analysis: Inference

4.2. Confidence Intervals

We have already looked at confidence intervals (CI) for the mean of a normally distributed random
variable in Sections 1.8 and 1.10.3. CI for the regression parameters are equally easy to construct
and closely related to t tests. Wooldridge (2019, Section 4.3) provides a succinct discussion. The 95%
confidence interval for parameter β j is simply

β̂ j ± c · se(β̂ j), (4.8)

where c is the same critical value for the two-sided t test using a significance level α = 5%.
Wooldridge (2019) shows examples of how to manually construct these CI.

R provides a convenient way to calculate the CI for all parameters: If the regression results are
stored in a variable myres, the command confint(myres) gives a table of 95% confidence inter-
vals. Other levels can be chosen using the option level = value. The 99% CI are for example
obtained as confint(myres,level=0.99).

Wooldridge, Example 4.8: Model of R&D Expenditures4.8

We study the relationship between the R&D expenditures of a firm, its size, and the profit margin for a
sample of 32 firms in the chemical industry. The regression equation is

log(rd) = β0 + β1 · log(sales) + β2 · profmarg+ u

Script 4.3 (Example-4-8.R) presents the regression results as well as the 95% and 99% CI. See Wooldridge
(2019) for the manual calculation of the CI and comments on the results.

Output of Script 4.3: Example-4-8.R

> data(rdchem, package=’wooldridge’)

> # OLS regression:
> myres <- lm(log(rd) ~ log(sales)+profmarg, data=rdchem)

> # Regression output:
> summary(myres)

Call:
lm(formula = log(rd) ~ log(sales) + profmarg, data = rdchem)

Residuals:
Min 1Q Median 3Q Max

-0.97681 -0.31502 -0.05828 0.39020 1.21783

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.37827 0.46802 -9.355 2.93e-10 ***
log(sales) 1.08422 0.06020 18.012 < 2e-16 ***
profmarg 0.02166 0.01278 1.694 0.101
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5136 on 29 degrees of freedom
Multiple R-squared: 0.918, Adjusted R-squared: 0.9123
F-statistic: 162.2 on 2 and 29 DF, p-value: < 2.2e-16



4.3. Linear Restrictions: F-Tests 123

> # 95% CI:
> confint(myres)

2.5 % 97.5 %
(Intercept) -5.335478450 -3.4210681
log(sales) 0.961107256 1.2073325
profmarg -0.004487722 0.0477991

> # 99% CI:
> confint(myres, level=0.99)

0.5 % 99.5 %
(Intercept) -5.66831270 -3.08823382
log(sales) 0.91829920 1.25014054
profmarg -0.01357817 0.05688955

4.3. Linear Restrictions: F Tests

Wooldridge (2019, Sections 4.4 and 4.5) discusses more general tests than those for the null hypothe-
ses in Equation 4.1. They can involve one or more hypotheses involving one or more population
parameters in a linear fashion.

We follow the illustrative example of Wooldridge (2019, Section 4.5) and analyze major league
baseball players’ salaries using the data set MLB1.dta and the regression model

log(salary) = β0 + β1 · years+ β2 · gamesyr+ β3 · bavg+ β4 · hrunsyr+ β5 · rbisyr+ u (4.9)

We want to test whether the performance measures batting average (bavg), home runs per year
(hrunsyr), and runs batted in per year (rbisyr) have an impact on the salary once we control
for the number of years as an active player (years) and the number of games played per year
(gamesyr). So we state our null hypothesis as H0 : β3 = 0, β4 = 0, β5 = 0 versus H1 : H0 is false, i.e.
at least one of the performance measures matters.

The test statistic of the F test is based on the relative difference between the sum of squared
residuals in the general (unrestricted) model and a restricted model in which the hypotheses are
imposed SSRur and SSRr, respectively. In our example, the restricted model is one in which bavg,
hrunsyr, and rbisyr are excluded as regressors. If both models involve the same dependent
variable, it can also be written in terms of the coefficient of determination in the unrestricted and the
restricted model R2

ur and R2
r , respectively:

F =
SSRr − SSRur

SSRur
· n− k− 1

q
=

R2
ur − R2

r
1− R2

ur
· n− k− 1

q
, (4.10)

where q is the number of restrictions (in our example, q = 3). Intuitively, if the null hypothesis is
correct, then imposing it as a restriction will not lead to a significant drop in the model fit and the
F test statistic should be relatively small. It can be shown that under the CLM assumptions and the
null hypothesis, the statistic has an F distribution with the numerator degrees of freedom equal to q
and the denominator degrees of freedom of n− k− 1. Given a significance level α, we will reject H0
if F > c, where the critical value c is the 1− α quantile of the relevant Fq,n−k−1 distribution. In our
example, n = 353, k = 5, q = 3. So with α = 1%, the critical value is 3.84 and can be calculated using
the qf function as

> # CV for alpha=1% using the F distribution with 3 and 347 d.f.:



124 4. Multiple Regression Analysis: Inference

> qf(1-0.01, 3,347)
[1] 3.83852

Script 4.4 (F-Test-MLB.R) shows the calculations for this example. The result is F = 9.55 > 3.84,
so we clearly reject H0. We also calculate the p value for this test. It is p = 4.47 · 10−06 = 0.00000447,
so we reject H0 for any reasonable significance level.

Output of Script 4.4: F-Test-MLB.R

> data(mlb1, package=’wooldridge’)

> # Unrestricted OLS regression:
> res.ur <- lm(log(salary) ~ years+gamesyr+bavg+hrunsyr+rbisyr, data=mlb1)

> # Restricted OLS regression:
> res.r <- lm(log(salary) ~ years+gamesyr, data=mlb1)

> # R2:
> ( r2.ur <- summary(res.ur)$r.squared )
[1] 0.6278028

> ( r2.r <- summary(res.r)$r.squared )
[1] 0.5970716

> # F statistic:
> ( F <- (r2.ur-r2.r) / (1-r2.ur) * 347/3 )
[1] 9.550254

> # p value = 1-cdf of the appropriate F distribution:
> 1-pf(F, 3,347)
[1] 4.473708e-06

It should not be surprising that there is a more convenient way to do this in R. The package car
provides a command linearHypothesis which is well suited for these kinds of tests.1 Given the
unrestricted estimation results are stored in a variable res, an F test is conducted with

linearHypothesis(res, myH0)

where myH0 describes the null hypothesis to be tested. It is a vector of length q where each restriction
is described as a text in which the variable name takes the place of its parameter. In our example, H0
is that the three parameters of bavg, hrunsyr, and rbisyr are all equal to zero, which translates
as myH0 <- c("bavg=0","hrunsyr=0","rbisyr=0"). The “=0” can also be omitted since this
is the default hypothesis. Script 4.5 (F-Test-MLB-auto.R) implements this for the same test as the
manual calculations done in Script 4.4 (F-Test-MLB.R) and results in exactly the same F statistic
and p value.

1See Section 1.1.3 for how to use packages.



4.3. Linear Restrictions: F-Tests 125

Output of Script 4.5: F-Test-MLB-auto.R

> data(mlb1, package=’wooldridge’)

> # Unrestricted OLS regression:
> res.ur <- lm(log(salary) ~ years+gamesyr+bavg+hrunsyr+rbisyr, data=mlb1)

> # Load package "car" (which has to be installed on the computer)
> library(car)

> # F test
> myH0 <- c("bavg","hrunsyr","rbisyr")

> linearHypothesis(res.ur, myH0)
Linear hypothesis test

Hypothesis:
bavg = 0
hrunsyr = 0
rbisyr = 0

Model 1: restricted model
Model 2: log(salary) ~ years + gamesyr + bavg + hrunsyr + rbisyr

Res.Df RSS Df Sum of Sq F Pr(>F)
1 350 198.31
2 347 183.19 3 15.125 9.5503 4.474e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This function can also be used to test more complicated null hypotheses. For example, suppose
a sports reporter claims that the batting average plays no role and that the number of home runs
has twice the impact as the number of runs batted in. This translates (using variable names instead
of numbers as subscripts) as H0 : βbavg = 0, βhrunsyr = 2 · βrbisyr. For R, we translate it as myH0 <-
c("bavg=0","hrunsyr=2*rbisyr"). The output of Script 4.6 (F-Test-MLB-auto2.R) shows
the results of this test. The p value is p = 0.6, so we cannot reject H0.

Output of Script 4.6: F-Test-MLB-auto2.R

> # F test (F-Test-MLB-auto.R has to be run first!)
> myH0 <- c("bavg", "hrunsyr=2*rbisyr")

> linearHypothesis(res.ur, myH0)
Linear hypothesis test

Hypothesis:
bavg = 0
hrunsyr - 2 rbisyr = 0

Model 1: restricted model
Model 2: log(salary) ~ years + gamesyr + bavg + hrunsyr + rbisyr

Res.Df RSS Df Sum of Sq F Pr(>F)
1 349 183.73
2 347 183.19 2 0.54035 0.5118 0.5999



126 4. Multiple Regression Analysis: Inference

If we are interested in testing the null hypothesis that a set of coefficients with similar names are
equal to zero, the function matchCoefs(res,expr) can be handy. It provides the names of all
coefficients in result res which contain the expression expr. Script 4.7 (F-Test-MLB-auto3.R)
presents an example how this works. A more realistic example is given in Section 7.5 where we can
automatically select all interaction coefficients.

Output of Script 4.7: F-Test-MLB-auto3.R

> # Note: Script "F-Test-MLB-auto.R" has to be run first to create res.ur.
> # Which variables used in res.ur contain "yr" in their names?
> myH0 <- matchCoefs(res.ur,"yr")

> myH0
[1] "gamesyr" "hrunsyr" "rbisyr"

> # F test (F-Test-MLB-auto.R has to be run first!)
> linearHypothesis(res.ur, myH0)
Linear hypothesis test

Hypothesis:
gamesyr = 0
hrunsyr = 0
rbisyr = 0

Model 1: restricted model
Model 2: log(salary) ~ years + gamesyr + bavg + hrunsyr + rbisyr

Res.Df RSS Df Sum of Sq F Pr(>F)
1 350 311.67
2 347 183.19 3 128.48 81.125 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Both the most important and the most straightforward F test is the one for overall significance.
The null hypothesis is that all parameters except for the constant are equal to zero. If this null
hypothesis holds, the regressors do not have any joint explanatory power for y. The results of such
a test are automatically included in the last line of summary(lm(...)). As an example, see Script
4.3 (Example-4-8.R). The null hypothesis that neither the sales nor the margin have any relation
to R&D spending is clearly rejected with an F statistic of 162.2 and a p value smaller than 10−15.



4.4. Reporting Regression Results 127

4.4. Reporting Regression Results

Now we know most of the statistics shown in a typical regression output. Wooldridge (2019) provides
a discussion of how to report them in Section 4.6. We will come back to these issues in more detail in
Chapter 19. Here is already a preview of how to conveniently generate tables of different regression
results very much like suggested in Wooldridge (2019, Example 4.10).

There are numerous R packages that deal with automatically generating useful regression tables.
A notable example is the package stargazer which implements a command with the same name.2

Given a list of regression results, it generates a table including all of them. It is quite useful with
the default settings and can be adjusted using various options. It generates a table either as text or
as a LATEX code (for those who know what that means). We demonstrate this using the following
example.

Wooldridge, Example 4.10: Salary-Pension Tradeoff for Teachers4.10

Wooldridge (2019) discusses a model of the tradeoff between salary and pensions for teachers. It boils
down to the regression specification

log(salary) = β0 + β1 · (benefits/salary) + other factors+ u

Script 4.8 (Example-4-10.R) loads the data, generates the new variable b_s = (benefits/salary)
and runs three regressions with different sets of other factors. The stargazer command is then
used to display the results in a clearly arranged table of all relevant results. We choose the options
type="text" to request a text output (instead of a LATEX table) and keep.stat=c("n","rsq") to have
n and R2 reported in the table.

Note that the default translation of p values to stars differes between stargazer() and summary():
one star * here tranlates to p < 0.1 whereas it means p < 0.05 in the standard summary() out-
put. This is of course arbitrary. The behavior of stargazer can be changed with the option
star.cutoffs=c(0.05, 0.01, 0.001).

2See Section 1.1.3 for how to use packages.



128 4. Multiple Regression Analysis: Inference

Output of Script 4.8: Example-4-10.R

> data(meap93, package=’wooldridge’)

> # define new variable within data frame
> meap93$b_s <- meap93$benefits / meap93$salary

> # Estimate three different models
> model1<- lm(log(salary) ~ b_s , data=meap93)

> model2<- lm(log(salary) ~ b_s+log(enroll)+log(staff), data=meap93)

> model3<- lm(log(salary) ~ b_s+log(enroll)+log(staff)+droprate+gradrate
> , data=meap93)

> # Load package and display table of results
> library(stargazer)

> stargazer(list(model1,model2,model3),type="text",keep.stat=c("n","rsq"))

==========================================
Dependent variable:

-----------------------------
log(salary)

(1) (2) (3)
------------------------------------------
b_s -0.825*** -0.605*** -0.589***

(0.200) (0.165) (0.165)

log(enroll) 0.087*** 0.088***
(0.007) (0.007)

log(staff) -0.222*** -0.218***
(0.050) (0.050)

droprate -0.0003
(0.002)

gradrate 0.001
(0.001)

Constant 10.523*** 10.844*** 10.738***
(0.042) (0.252) (0.258)

------------------------------------------
Observations 408 408 408
R2 0.040 0.353 0.361
==========================================
Note: *p<0.1; **p<0.05; ***p<0.01



5. Multiple Regression Analysis: OLS
Asymptotics

Asymptotic theory allows us to relax some assumptions needed to derive the sampling distribution
of estimators if the sample size is large enough. For running a regression in a software package, it
does not matter whether we rely on stronger assumptions or on asymptotic arguments. So we don’t
have to learn anything new regarding the implementation.

Instead, this chapter aims to improve on our intuition regarding the workings of asymptotics by
looking at some simulation exercises in Section 5.1. Section 5.2 briefly discusses the implementation
of the regression-based LM test presented by Wooldridge (2019, Section 5.2).

5.1. Simulation Exercises

In Section 2.7, we already used Monte Carlo Simulation methods to study the mean and variance
of OLS estimators under the assumptions SLR.1–SLR.5. Here, we will conduct similar experiments
but will look at the whole sampling distribution of OLS estimators similar to Section 1.10.2 where
we demonstrated the central limit theorem for the sample mean. Remember that the sampling
distribution is important since confidence intervals, t and F tests and other tools of inference rely on
it.

Theorem 4.1 of Wooldridge (2019) gives the normal distribution of the OLS estimators (conditional
on the regressors) based on assumptions MLR.1 through MLR.6. In contrast, Theorem 5.2 states that
asymptotically, the distribution is normal by assumptions MLR.1 through MLR.5 only. Assumption
MLR.6 – the normal distribution of the error terms – is not required if the sample is large enough to
justify asymptotic arguments.

In other words: In small samples, the parameter estimates have a normal sampling distribution
only if

• the error terms are normally distributed and
• we condition on the regressors.

To see how this works out in practice, we set up a series of simulation experiments. Section 5.1.1
simulates a model consistent with MLR.1 through MLR.6 and keeps the regressors fixed. Theory
suggests that the sampling distribution of β̂ is normal, independent of the sample size. Section
5.1.2 simulates a violation of assumption MLR.6. Normality of β̂ only holds asymptotically, so for
small sample sizes we suspect a violation. Finally, we will look closer into what “conditional on the
regressors” means and simulate a (very plausible) violation of this in Section 5.1.3.

5.1.1. Normally Distributed Error Terms

Script 5.1 (Sim-Asy-OLS-norm.R) draws 10 000 samples of a given size (which has to be stored
in variable n before) from a population that is consistent with assumptions MLR.1 through MLR.6.
The error terms are specified to be standard normal. The slope estimate β̂1 is stored for each of



130 5. Multiple Regression Analysis: OLS Asymptotics

the samples. For a more detailed discussion of the implementation, see Section 2.7.2 where a very
similar simulation exercise is introduced.

Script 5.1: Sim-Asy-OLS-norm.R
# Note: We’ll have to set the sample size first, e.g. by uncommenting:
# n <- 100
# Set the random seed
set.seed(1234567)
# set true parameters: intercept & slope
b0 <- 1; b1 <- 0.5
# initialize b1hat to store 10000 results:
b1hat <- numeric(10000)

# Draw a sample of x, fixed over replications:
x <- rnorm(n,4,1)
# repeat r times:
for(j in 1:10000) {
# Draw a sample of u (std. normal):
u <- rnorm(n)
# Draw a sample of y:
y <- b0 + b1*x + u
# regress y on x and store slope estimate at position j
bhat <- coef( lm(y~x) )
b1hat[j] <- bhat["x"]

}

This code was run for different sample sizes. The density estimate together with the corresponding
normal density are shown in Figure 5.1. Not surprisingly, all distributions look very similar to the
normal distribution – this is what Theorem 4.1 predicted. Note that the fact that the sampling
variance decreases as n rises is only obvious if we pay attention to the different scales of the axes.

5.1.2. Non-Normal Error Terms

The next step is to simulate a violation of assumption MLR.6. In order to implement a rather drastic
violation of the normality assumption similar to Section 1.10.2, we implement a “standardized” χ2

distribution with one degree of freedom. More specifically, let v be distributed as χ2
[1]. Because

this distribution has a mean of 1 and a variance of 2, the error term u = v−1√
2

has a mean of 0
and a variance of 1. This simplifies the comparison to the exercise with the standard normal errors
above. Figure 5.2 plots the density functions of the standard normal distribution used above and the
“standardized” χ2 distribution. Both have a mean of 0 and a variance of 1 but very different shapes.

Script 5.2 (Sim-Asy-OLS-chisq.R) implements a simulation of this model and is listed in
the appendix (p. 328). The only line of code we changed compared to the previous Script 5.1
(Sim-Asy-OLS-norm.R) is the sampling of u where we replace drawing from a standard normal
distribution using u <- rnorm(n) with sampling from the standardized χ2

[1] distribution with

u <- ( rchisq(n,1)-1 ) / sqrt(2)

For each of the same sample sizes used above, we again estimate the slope parameter for 10 000
samples. The densities of β̂1 are plotted in Figure 5.3 together with the respective normal distribu-
tions with the corresponding variances. For the small sample sizes, the deviation from the normal
distribution is strong. Note that the dashed normal distributions have the same mean and variance.
The main difference is the kurtosis which is larger than 8 in the simulations for n = 5 compared to
the normal distribution for which the kurtosis is equal to 3.



5.1. Simulation Exercises 131

Figure 5.1. Density of β̂1 with different sample sizes: normal error terms

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

D
en

si
ty

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

D
en

si
ty

(a) n = 5 (b) n = 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
1

2
3

D
en

si
ty

0.40 0.45 0.50 0.55 0.60

0
2

4
6

8
10

12

D
en

si
ty

(c) n = 100 (d) n = 1 000

Figure 5.2. Density Functions of the Simulated Error Terms

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

standardized χ1
2

standard normal



132 5. Multiple Regression Analysis: OLS Asymptotics

Figure 5.3. Density of β̂1 with different sample sizes: non-normal error terms

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

D
en

si
ty

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

D
en

si
ty

(a) n = 5 (b) n = 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
1

2
3

4

D
en

si
ty

0.40 0.45 0.50 0.55 0.60

0
2

4
6

8
10

12

D
en

si
ty

(c) n = 100 (d) n = 1 000

For larger sample sizes, the sampling distribution of β̂1 converges to the normal distribution. For
n = 100, the difference is much smaller but still discernible. For n = 1 000, it cannot be detected
anymore in our simulation exercise. How large the sample needs to be depends among other things
on the severity of the violations of MLR.6. If the distribution of the error terms is not as extremely
non-normal as in our simulations, smaller sample sizes like the rule of thumb n = 30 might suffice
for valid asymptotics.



5.1. Simulation Exercises 133

5.1.3. (Not) Conditioning on the Regressors

There is a more subtle difference between the finite-sample results regarding the variance (Theorem
3.2) and distribution (Theorem 4.1) on one hand and the corresponding asymptotic results (Theorem
5.2). The former results describe the sampling distribution “conditional on the sample values of the
independent variables”. This implies that as we draw different samples, the values of the regressors
x1, . . . , xk remain the same and only the error terms and dependent variables change.

In our previous simulation exercises in Scripts like 2.16 (SLR-Sim-Model-Condx.R), 5.1
(Sim-Asy-OLS-norm.R), and 5.2 (Sim-Asy-OLS-chisq.R), this is implemented by making
random draws of x outside of the simulation loop. This is a realistic description of how data
is generated only in some simple experiments: The experimenter chooses the regressors for the
sample, conducts the experiment and measures the dependent variable.

In most applications we are concerned with, this is an unrealistic description of how we obtain
our data. If we draw a sample of individuals, both their dependent and independent variables differ
across samples. In these cases, the distribution “conditional on the sample values of the independent
variables” can only serve as an approximation of the actual distribution with varying regressors. For
large samples, this distinction is irrelevant and the asymptotic distribution is the same.

Let’s see how this plays out in an example. Script 5.3 (Sim-Asy-OLS-uncond.R) differs from
Script 5.1 (Sim-Asy-OLS-norm.R) only by moving the generation of the regressors into the loop in
which the 10 000 samples are generated. This is inconsistent with Theorem 4.1, so for small samples,
we don’t know the distribution of β̂1. Theorem 5.2 is applicable, so for (very) large samples, we
know that the estimator is normally distributed.

Script 5.3: Sim-Asy-OLS-uncond.R
# Note: We’ll have to set the sample size first, e.g. by uncommenting:
# n <- 100
# Set the random seed
set.seed(1234567)
# set true parameters: intercept & slope
b0<-1; b1<-0.5
# initialize b1hat to store 10000 results:
b1hat <- numeric(10000)

# repeat r times:
for(j in 1:10000) {

# Draw a sample of x, varying over replications:
x <- rnorm(n,4,1)
# Draw a sample of u (std. normal):
u <- rnorm(n)
# Draw a sample of y:
y <- b0 + b1*x + u
# regress y on x and store slope estimate at position j
bhat <- coef( lm(y~x) )
b1hat[j] <- bhat["x"]

}

Figure 5.4 shows the distribution of the 10 000 estimates generated by Script 5.3
(Sim-Asy-OLS-uncond.R) for n = 5, 10, 100, and 1 000. As we expected from theory, the
distribution is (close to) normal for large samples. For small samples, it deviates quite a bit. The
kurtosis is 8.7 for a sample size of n = 5 which is far away from the kurtosis of 3 of a normal
distribution.



134 5. Multiple Regression Analysis: OLS Asymptotics

Figure 5.4. Density of β̂1 with different sample sizes: varying regressors

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

D
en

si
ty

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
en

si
ty

(a) n = 5 (b) n = 10

0.2 0.4 0.6 0.8

0
1

2
3

4

D
en

si
ty

0.40 0.45 0.50 0.55 0.60

0
2

4
6

8
10

12

D
en

si
ty

(c) n = 100 (d) n = 1 000



5.2. LM Test 135

5.2. LM Test

As an alternative to the F tests discussed in Section 4.3, LM tests for the same sort of hypotheses can
be very useful with large samples. In the linear regression setup, the test statistic is

LM = n · R2
ũ,

where n is the sample size and R2
ũ is the usual R2 statistic in a regression of the residual ũ from the

restricted model on the unrestricted set of regressors. Under the null hypothesis, it is asymptotically
distributed as χ2

q with q denoting the number of restrictions. Details are given in Wooldridge (2019,
Section 5.2).

The implementation in R is straightforward if we remember that the residuals can be obtained
with the resid command.

Wooldridge, Example 5.3: Economic Model of Crime5.3

We analyze the same data on the number of arrests as in Example 3.5. The unrestricted regression
model equation is

narr86 = β0 + β1pcnv+ β2avgsen+ β3tottime+ β4ptime86+ β5qemp86+ u.

The dependent variable narr86 reflects the number of times a man was arrested and is explained by
the proportion of prior arrests (pcnv), previous average sentences (avgsen), the time spend in prison
before 1986 (tottime), the number of months in prison in 1986 (ptime86), and the number of quarters
unemployed in 1986 (qemp86).
The joint null hypothesis is

H0 : β2 = β3 = 0,

so the restricted set of regressors excludes avgsen and tottime. Script 5.4 (Example-5-3.R) shows
an implementation of this LM test. The restricted model is estimated and its residuals utilde=ũ are
calculated. They are regressed on the unrestricted set of regressors. The R2 from this regression is
0.001494, so the LM test statistic is calculated to be around LM = 0.001494 · 2725 = 4.071. This is smaller
than the critical value for a significance level of α = 10%, so we do not reject the null hypothesis. We
can also easily calculate the p value in R using the χ2 cdf qchisq. It turns out to be 0.1306.
The same hypothesis can be tested using the F test presented in Section 4.3 using the command
linearHypothesis. In this example, it delivers the same p value up to three digits.



136 5. Multiple Regression Analysis: OLS Asymptotics

Output of Script 5.4: Example-5-3.R

> data(crime1, package=’wooldridge’)

> # 1. Estimate restricted model:
> restr <- lm(narr86 ~ pcnv+ptime86+qemp86, data=crime1)

> # 2. Regression of residuals from restricted model:
> utilde <- resid(restr)

> LMreg <- lm(utilde ~ pcnv+ptime86+qemp86+avgsen+tottime, data=crime1)

> # R-squared:
> (r2 <- summary(LMreg)$r.squared )
[1] 0.001493846

> # 3. Calculation of LM test statistic:
> LM <- r2 * nobs(LMreg)

> LM
[1] 4.070729

> # 4. Critical value from chi-squared distribution, alpha=10%:
> qchisq(1-0.10, 2)
[1] 4.60517

> # Alternative to critical value: p value
> 1-pchisq(LM, 2)
[1] 0.1306328

> # Alternative: automatic F test (see above)
> library(car)

> unrestr <- lm(narr86 ~ pcnv+ptime86+qemp86+avgsen+tottime, data=crime1)

> linearHypothesis(unrestr, c("avgsen=0","tottime=0"))
Linear hypothesis test

Hypothesis:
avgsen = 0
tottime = 0

Model 1: restricted model
Model 2: narr86 ~ pcnv + ptime86 + qemp86 + avgsen + tottime

Res.Df RSS Df Sum of Sq F Pr(>F)
1 2721 1927.3
2 2719 1924.4 2 2.879 2.0339 0.131



6. Multiple Regression Analysis: Further
Issues

In this chapter, we cover some issues regarding the implementation of regression analyses. Section
6.1 discusses more flexible specification of regression equations such as variable scaling, standard-
ization, polynomials and interactions. They can be conveniently included in the R formula and
used in the lm command for OLS estimation. Section 6.2 is concerned with predictions and their
confidence and prediction intervals.

6.1. Model Formulae

If we run a regression in R using a syntax like lm(y~x1+x2+x3,...), the expression y~x1+x2+x3
is referred to as a model formula. It is a compact symbolic way to describe our regression equation.
The dependent variable is separated from the regressors by a “~” and the regressors are separated by
a “+” indicating that they enter the equation in a linear fashion. A constant is added by default. Such
formulae can be specified in more complex ways to indicate different kinds of regression equations.
We will cover the most important ones in this section.

6.1.1. Data Scaling: Arithmetic Operations Within a Formula

Wooldridge (2019) discusses how different scaling of the variables in the model affects the parameter
estimates and other statistics in Section 6.1. As an example, a model relating the birth weight to
cigarette smoking of the mother during pregnancy and the family income. The basic model equation
is

bwght = β0 + β1cigs+ β2faminc+ u (6.1)

which translates into R formula syntax as bwght~cigs+faminc.
If we want to measure the weight in pounds rather than ounces, there are two ways to implement

different rescaling in R. We can
• Define a different variable like bwghtlbs <- bwght/16 and use this variable in the formula:
bwghtlbs~cigs+faminc

• Specify this rescaling directly in the formula: I(bwght/16)~cigs+faminc
The latter approach can be more convenient. Note that the I(...) brackets include any parts of the
formula in which we specify arithmetic transformations.1

If we want to measure the number of cigarettes smoked per day in packs, we could again de-
fine a new variable packs <- cigs/20 and use it as a regressor or simply specify the formula
bwght~I(cigs/20)+faminc. Here, the importance to use the I function is easy to see. If we spec-
ified the formula bwght~I(cigs/20+faminc) instead, we would have a (nonsense) model with
only one regressor: the sum of the packs smoked and the income.

1The function I() could actually be left out in this example. But in other examples, this would create confusion so it is a
good idea to use it whenever we specify arithmetic transformations.



138 6. Multiple Regression Analysis: Further Issues

Script 6.1 (Data-Scaling.R) demonstrates these features. As discussed in Wooldridge (2019,
Section 6.1), dividing the dependent variable by 16 changes all coefficients by the same factor 1

16
and dividing a regressor by 20 changes its coefficient by the factor 20. Other statistics like R2 are
unaffected.

Output of Script 6.1: Data-Scaling.R

> data(bwght, package=’wooldridge’)

> # Basic model:
> lm( bwght ~ cigs+faminc, data=bwght)

Call:
lm(formula = bwght ~ cigs + faminc, data = bwght)

Coefficients:
(Intercept) cigs faminc
116.97413 -0.46341 0.09276

> # Weight in pounds, manual way:
> bwght$bwghtlbs <- bwght$bwght/16

> lm( bwghtlbs ~ cigs+faminc, data=bwght)

Call:
lm(formula = bwghtlbs ~ cigs + faminc, data = bwght)

Coefficients:
(Intercept) cigs faminc

7.310883 -0.028963 0.005798

> # Weight in pounds, direct way:
> lm( I(bwght/16) ~ cigs+faminc, data=bwght)

Call:
lm(formula = I(bwght/16) ~ cigs + faminc, data = bwght)

Coefficients:
(Intercept) cigs faminc

7.310883 -0.028963 0.005798

> # Packs of cigarettes:
> lm( bwght ~ I(cigs/20) +faminc, data=bwght)

Call:
lm(formula = bwght ~ I(cigs/20) + faminc, data = bwght)

Coefficients:
(Intercept) I(cigs/20) faminc
116.97413 -9.26815 0.09276



6.1. Model Formulae 139

6.1.2. Standardization: Beta Coefficients

A specific arithmetic operation is the standardization. A variable is standardized by subtracting its
mean and dividing by its standard deviation. For example, the standardized dependent variable y
and regressor x1 are

zy =
y− ȳ
sd(y)

zx1 =
x1 − x̄1

sd(x1)
(6.2)

If the regression model only contains standardized variables, the coefficients have a special inter-
pretation. They measure by how many standard deviations y changes as the respective independent
variable increases by one standard deviation. Inconsistent with the notation used here, they are some-
times referred to as beta coefficients.

In R, we can use the same type of arithmetic transformations as in Section 6.1.1 to subtract the
mean and divide by the standard deviation. But it can also be done more conveniently by using the
function scale directly for all variables we want to standardize. The equation and the corresponding
R formula in a model with two standardized regressors would be

zy = b1zx1 + b2zx2 + u (6.3)

which translates into R syntax as scale(y)~0+scale(x1)+scale(x2). The model does not
include a constant because all averages are removed in the standardization. The constant is explicitly
suppressed in R using the 0+ in the formula, see Section 2.5.

Wooldridge, Example 6.1: Effects of Pollution on Housing Prices6.1

We are interested in how air pollution (nox) and other neighborhood characteristics affect the value of
a house. A model using standardization for all variables is expressed in an R formula as

scale(price)~0+scale(nox)+scale(crime)+scale(rooms)+scale(dist)+scale(stratio)

The output of Script 6.2 (Example-6-1.R) shows the parameters estimates of this model. The house
price drops by 0.34 standard deviations as the air pollution increases by one standard deviation.

Output of Script 6.2: Example-6-1.R

> data(hprice2, package=’wooldridge’)

> # Estimate model with standardized variables:
> lm(scale(price) ~ 0+scale(nox)+scale(crime)+scale(rooms)+
> scale(dist)+scale(stratio), data=hprice2)

Call:
lm(formula = scale(price) ~ 0 + scale(nox) + scale(crime) + scale(rooms) +

scale(dist) + scale(stratio), data = hprice2)

Coefficients:
scale(nox) scale(crime) scale(rooms) scale(dist)

-0.3404 -0.1433 0.5139 -0.2348
scale(stratio)

-0.2703



140 6. Multiple Regression Analysis: Further Issues

6.1.3. Logarithms

We have already seen in Section 2.4 that we can include the function log directly in formulas to
represent logarithmic and semi-logarithmic models. A simple example of a partially logarithmic
model and its R formulary would be

log(y) = β0 + β1 log(x1) + β2x2 + u (6.4)

which in the language of R can be expressed as log(y)~log(x1)+x2.
Script 6.3 (Formula-Logarithm.R) shows this again for the house price example. As the air

pollution nox increases by one percent, the house price drops by about 0.72 percent. As the number
of rooms increases by one, the value of the house increases by roughly 30.6%. Wooldridge (2019,
Section 6.2) discusses how the latter value is only an approximation and the actual estimated effect
is (exp(0.306)− 1) = 0.358 which is 35.8%.

Output of Script 6.3: Formula-Logarithm.R

> data(hprice2, package=’wooldridge’)

> # Estimate model with logs:
> lm(log(price)~log(nox)+rooms, data=hprice2)

Call:
lm(formula = log(price) ~ log(nox) + rooms, data = hprice2)

Coefficients:
(Intercept) log(nox) rooms

9.2337 -0.7177 0.3059

6.1.4. Quadratics and Polynomials

Specifying quadratic terms or higher powers of regressors can be a useful way to make a model more
flexible by allowing the partial effects or (semi-)elasticities to decrease or increase with the value of
the regressor.

Instead of creating additional variables containing the squared value of a regressor, in R we can
simply add I(x^2) to a formula. Higher order terms are specified accordingly. A simple cubic
model and its corresponding R formula are

y = β0 + β1x + β2x2 + β3x3 + u (6.5)

which translates to y~x+I(x^2)+I(x^3) in R syntax.
An alternative to the specification with I(...) is the poly function. The third-order polynomial

x+I(x^2)+I(x^3) can equivalently be written as

poly(x, 3, raw=TRUE)

This can be more concise with long variable names and/or a high degree of the polynomial. It
is also useful since some post-estimation commands like Anova are better able to understand the
specification. And without the option raw=TRUE, we specify orthogonal polynomials instead of
standard (raw) polynomials.

For nonlinear models like this, it is often useful to get a graphical illustration of the effects. Section
6.2.3 shows how to conveniently generate these.



6.1. Model Formulae 141

Wooldridge, Example 6.2: Effects of Pollution on Housing Prices6.2

This example of Wooldridge (2019) demonstrates the combination of logarithmic and quadratic speci-
fications. The model for house prices is

log(price) = β0 + β1 log(nox) + β2 log(dist) + β3rooms+ β4rooms
2 + β5stratio+ u.

Script 6.4 (Example-6-2.R) implements this model and presents detailed results including t statistics
and their p values. The quadratic term of rooms has a significantly positive coefficient β̂4 implying
that the semi-elasticity increases with more rooms. The negative coefficient for rooms and the positive
coefficient for rooms2 imply that for “small” numbers of rooms, the price decreases with the number
of rooms and for “large” values, it increases. The number of rooms implying the smallest price can be
found as2

rooms∗ =
−β3
2β4

≈ 4.4.

Output of Script 6.4: Example-6-2.R

> data(hprice2, package=’wooldridge’)

> res <- lm(log(price)~log(nox)+log(dist)+rooms+I(rooms^2)+
> stratio,data=hprice2)

> summary(res)

Call:
lm(formula = log(price) ~ log(nox) + log(dist) + rooms + I(rooms^2) +

stratio, data = hprice2)

Residuals:
Min 1Q Median 3Q Max

-1.04285 -0.12774 0.02038 0.12650 1.25272

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.385477 0.566473 23.630 < 2e-16 ***
log(nox) -0.901682 0.114687 -7.862 2.34e-14 ***
log(dist) -0.086781 0.043281 -2.005 0.04549 *
rooms -0.545113 0.165454 -3.295 0.00106 **
I(rooms^2) 0.062261 0.012805 4.862 1.56e-06 ***
stratio -0.047590 0.005854 -8.129 3.42e-15 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2592 on 500 degrees of freedom
Multiple R-squared: 0.6028, Adjusted R-squared: 0.5988
F-statistic: 151.8 on 5 and 500 DF, p-value: < 2.2e-16

> # Using poly(...):
> res <- lm(log(price)~log(nox)+log(dist)+poly(rooms,2,raw=TRUE)+
> stratio,data=hprice2)

2We need to find rooms∗ to minimize β3rooms+ β4rooms
2. Setting the first derivative β3 + 2β4rooms equal to zero and

solving for rooms delivers the result.



142 6. Multiple Regression Analysis: Further Issues

> summary(res)

Call:
lm(formula = log(price) ~ log(nox) + log(dist) + poly(rooms,

2, raw = TRUE) + stratio, data = hprice2)

Residuals:
Min 1Q Median 3Q Max

-1.04285 -0.12774 0.02038 0.12650 1.25272

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.385477 0.566473 23.630 < 2e-16 ***
log(nox) -0.901682 0.114687 -7.862 2.34e-14 ***
log(dist) -0.086781 0.043281 -2.005 0.04549 *
poly(rooms, 2, raw = TRUE)1 -0.545113 0.165454 -3.295 0.00106 **
poly(rooms, 2, raw = TRUE)2 0.062261 0.012805 4.862 1.56e-06 ***
stratio -0.047590 0.005854 -8.129 3.42e-15 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2592 on 500 degrees of freedom
Multiple R-squared: 0.6028, Adjusted R-squared: 0.5988
F-statistic: 151.8 on 5 and 500 DF, p-value: < 2.2e-16

6.1.5. ANOVA Tables

A natural question to ask is whether a regressor has additional statistically significant explanatory
power in a regression model, given all the other regressors. In simple model specifications, this
question can be answered by a simple t test, so the results for all regressors are available with a quick
look at the standard regression table.3 When working with polynomials or other specifications, the
influence of one regressor is captured by several parameters. We can test its significance with an F
test of the joint null hypothesis that all of these parameters are equal to zero. As an example, let’s
revisit Example 6.2:

log(price) = β0 + β1 log(nox) + β2 log(dist) + β3rooms+ β4rooms
2 + β5stratio+ u

The significance of rooms can be assessed with an F test of H0 : β3 = β4 = 0. As discussed in
Section 4.3, such a test can be performed with the command linearHypothesis from the package
car. This is shown in Script 6.5 (Example-6-2-Anova.R).4

A Type II ANOVA (analysis of variance) table does exactly this for each variable in the model and
displays the results in a clearly arranged table. Package car implements this in the function Anova
(not to be confused with the function anova). The example in Script 6.5 (Example-6-2-Anova.R)
shows that all the relevant results from our previous F test can be found again in the row la-
belled poly(rooms, 2, raw = TRUE). Column Df indicates that this test involves two parame-
ters. All other variables enter the model with a single parameter. Consequently the value of their
F test statistics corresponds to the respective squared t statistics seen in the output of Script 6.4
(Example-6-2.R).

3Section 4.1 discusses t tests.
4Remember that linearHypothesis(res, matchCoefs(res,"rooms")) tests the null hypothesis that all coefficients

of model res whose names contain “rooms” are equal to zero.



6.1. Model Formulae 143

Output of Script 6.5: Example-6-2-Anova.R

> library(car)

> data(hprice2, package=’wooldridge’)

> res <- lm(log(price)~log(nox)+log(dist)+poly(rooms,2,raw=TRUE)+
> stratio,data=hprice2)

> # Manual F test for rooms:
> linearHypothesis(res, matchCoefs(res,"rooms"))
Linear hypothesis test

Hypothesis:
poly(rooms, 2, raw = TRUE)1 = 0
poly(rooms, 2, raw = TRUE)2 = 0

Model 1: restricted model
Model 2: log(price) ~ log(nox) + log(dist) + poly(rooms, 2, raw = TRUE) +

stratio

Res.Df RSS Df Sum of Sq F Pr(>F)
1 502 48.433
2 500 33.595 2 14.838 110.42 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # ANOVA (type 2) table:
> Anova(res)
Anova Table (Type II tests)

Response: log(price)
Sum Sq Df F value Pr(>F)

log(nox) 4.153 1 61.8129 2.341e-14 ***
log(dist) 0.270 1 4.0204 0.04549 *
poly(rooms, 2, raw = TRUE) 14.838 2 110.4188 < 2.2e-16 ***
stratio 4.440 1 66.0848 3.423e-15 ***
Residuals 33.595 500
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The ANOVA table also allows to quickly compare the relevance of the regressors. The first column
shows the sum of squared deviations explained by the variables after all the other regressors are
controlled for. We see that in this sense, the number of rooms has the highest explanatory power in
our example.

ANOVA tables are also convenient if the effect of a variable is captured by several parameters for
other reasons. We will give an example when discuss factor variables ins Section 7.3. ANOVA tables
of Types I and III are less often of interest. They differ in what other variables are controlled for
when testing for the effect of one regressor. Fox and Weisberg (2011, Sections 4.4.3–4.4.4.) discuss
ANOVA tables in more detail.



144 6. Multiple Regression Analysis: Further Issues

6.1.6. Interaction Terms

Models with interaction terms allow the effect of one variable x1 to depend on the value of another
variable x2. A simple model including an interaction term would be

y = β0 + β1x1 + β2x2 + β3x1x2 + u. (6.6)

Of course, we can implement this in R by defining a new variable containing the product of the two
regressors. But again, a direct specification in the model formula is more convenient. The expression
x1:x2 within a formula adds the interaction term x1x2. Even more conveniently, x1*x2 adds not
only the interaction but also both original variables allowing for a very concise syntax. So the model
in equation 6.6 can be specified in R as either of the two formulas

y ~ x1+x2+x1:x2 ⇔ y ~ x1*x2
If one variable x1 is interacted with a set of other variables, they can be grouped by parentheses to

allow for a compact syntax. For example, a model equation and its R formula could be

y = β0 + β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3 + u. (6.7)

The shortest way to express this in R syntax is y ~ x1*(x2+x3).

Wooldridge, Example 6.3: Effects of Attendance on Final Exam Performance6.3

This example analyzes a model including a standardized dependent variable, quadratic terms and
an interaction. Standardized scores in the final exam are explained by class attendance, prior perfor-
mance and an interaction term:

stndfnl = β0 + β1atndrte+ β2priGPA+ β3ACT+ β4priGPA
2 + β5ACT

2 + β6priGPA · atndrte+ u

Script 6.6 (Example-6-3.R) estimates this model. The effect of attending classes is

∂stndfnl

∂atndrte
= β1 + β6priGPA.

For the average priGPA = 2.59, the script estimates this partial effect to be around 0.0078. It tests the
null hypothesis that this effect is zero using a simple F test, see Section 4.3. With a p value of 0.0034, this
hypothesis can be rejected at all common significance levels.



6.1. Model Formulae 145

Output of Script 6.6: Example-6-3.R

> data(attend, package=’wooldridge’)

> # Estimate model with interaction effect:
> (myres<-lm(stndfnl~atndrte*priGPA+ACT+I(priGPA^2)+I(ACT^2), data=attend))

Call:
lm(formula = stndfnl ~ atndrte * priGPA + ACT + I(priGPA^2) +

I(ACT^2), data = attend)

Coefficients:
(Intercept) atndrte priGPA ACT

2.050293 -0.006713 -1.628540 -0.128039
I(priGPA^2) I(ACT^2) atndrte:priGPA

0.295905 0.004533 0.005586

> # Estimate for partial effect at priGPA=2.59:
> b <- coef(myres)

> b["atndrte"] + 2.59*b["atndrte:priGPA"]
atndrte

0.007754572

> # Test partial effect for priGPA=2.59:
> library(car)

> linearHypothesis(myres,c("atndrte+2.59*atndrte:priGPA"))
Linear hypothesis test

Hypothesis:
atndrte + 2.59 atndrte:priGPA = 0

Model 1: restricted model
Model 2: stndfnl ~ atndrte * priGPA + ACT + I(priGPA^2) + I(ACT^2)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 674 519.34
2 673 512.76 1 6.5772 8.6326 0.003415 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



146 6. Multiple Regression Analysis: Further Issues

6.2. Prediction

In this section, we are concerned with predicting the value of the dependent variable y given certain
values of the regressors x1, . . . , xk. If these are the regressor values in our estimation sample, we
called these predictions “fitted values” and discussed their calculation in Section 2.2. Now, we
generalize this to arbitrary values and add standard errors, confidence intervals, and prediction
intervals.

6.2.1. Confidence Intervals for Predictions

Given a model
y = β0 + β1x1 + β2x2 + · · ·+ βkxk + u (6.8)

we are interested in the expected value of y given the regressors take specific values c1, c2, . . . , ck:

θ0 = E(y|x1 = c1, . . . , xk = ck) = β0 + β1c1 + β2c2 + · · ·+ βkck. (6.9)

The natural point estimates are

θ̂0 = β̂0 + β̂1c1 + β̂2c2 + · · ·+ β̂kck (6.10)

and can readily be obtained once the parameter estimates β̂0, . . . , β̂k are calculated.
Standard errors and confidence intervals are less straightforward to compute. Wooldridge (2019,

Section 6.4) suggests a smart way to obtain these from a modified regression. R provides an even
simpler and more convenient approach.

The command predict can not only automatically calculate θ̂0 but also its standard error and
confidence intervals. Its arguments are

• The regression results. If they are stored in a variable reg by a command like
reg <- lm(y~x1+x2+x3,...), we can just supply the name reg.

• A data frame containing the values of the regressors c1, . . . ck of the regressors x1, . . . xk with
the same variable names as in the data frame used for estimation. If we don’t have one yet,
it can for example be specified as data.frame(x1=c1, x2=c2,..., xk=ck) where x1
through xk are the variable names and c1 through ck are the values which can also specified
as vectors to get predictions at several values of the regressors. See Section 1.3.1 for more on
data frames.

• se.fit=TRUE to also request standard errors of the predictions
• interval="confidence" to also request confidence intervals (or for prediction intervals
interval="prediction", see below)

• level=0.99 to choose the 99% confidence interval instead of the default 95%. Of course,
arbitrary other values are possible.

• and more.
If the model formula contains some of the advanced features such as rescaling, quadratic terms and
interactions presented in Section 6.1, predict is clever enough to make the same sort of transfor-
mations for the predictions. Example 6.5 demonstrates some of the features.



6.2. Prediction 147

Wooldridge, Example 6.5: Confidence Interval for Predicted College GPA6.5

We try to predict the college GPA, for example to support the admission decisions for our college. Our
regression model equation is

colgpa = β0 + β1sat+ β2hsperc+ β3hsize+ β4hsize
2 + u.

Script 6.7 (Example-6-5.R) shows the implementation of the estimation and prediction. The estima-
tion results are stored as the variable reg. The values of the regressors for which we want to do the
prediction are stored in the new data frame cvalues. Then command predict is called with these
two arguments. For an SAT score of 1200, a high school percentile of 30 and a high school size of 5
(i.e. 500 students), the predicted college GPA is 2.7. Wooldridge (2019) obtains the same value using
a general but more cumbersome regression approach. The 95% confidence interval is reported with
the next command. With 95% confidence we can say that the expected college GPA for students with
these features is between 2.66 and 2.74.
Finally, we define three types of students with different values of sat, hsperc, and hsize. The data
frame cvalues is filled with these numbers and displayed as a table. For these three regressor variables,
we obtain the 99% confidence intervals.

Output of Script 6.7: Example-6-5.R

> data(gpa2, package=’wooldridge’)

> # Regress and report coefficients
> reg <- lm(colgpa~sat+hsperc+hsize+I(hsize^2),data=gpa2)

> reg

Call:
lm(formula = colgpa ~ sat + hsperc + hsize + I(hsize^2), data = gpa2)

Coefficients:
(Intercept) sat hsperc hsize I(hsize^2)

1.492652 0.001492 -0.013856 -0.060881 0.005460

> # Generate data set containing the regressor values for predictions
> cvalues <- data.frame(sat=1200, hsperc=30, hsize=5)

> # Point estimate of prediction
> predict(reg, cvalues)

1
2.700075

> # Point estimate and 95% confidence interval
> predict(reg, cvalues, interval = "confidence")

fit lwr upr
1 2.700075 2.661104 2.739047

> # Define three sets of regressor variables
> cvalues <- data.frame(sat=c(1200,900,1400), hsperc=c(30,20,5),
> hsize=c(5,3,1))

> cvalues
sat hsperc hsize



148 6. Multiple Regression Analysis: Further Issues

1 1200 30 5
2 900 20 3
3 1400 5 1

> # Point estimates and 99% confidence intervals for these
> predict(reg, cvalues, interval = "confidence", level=0.99)

fit lwr upr
1 2.700075 2.648850 2.751301
2 2.425282 2.388540 2.462025
3 3.457448 3.385572 3.529325

6.2.2. Prediction Intervals

Confidence intervals reflect the uncertainty about the expected value of the dependent variable given
values of the regressors. If we are interested in predicting the college GPA of an individual, we have
to account for the additional uncertainty regarding the unobserved characteristics reflected by the
error term u.

Wooldridge (2019) explains how to calculate the prediction interval manually and gives
an example. In practice, we can do these calculation automatically in R using the option
interval="prediction" of predict. This is demonstrated in Example 6.6.

Wooldridge, Example 6.6: Prediction Interval for College GPA6.6

We use the same model as in Example 6.5. to predict the college GPA. Script 6.8 (Example-6-6.R)
calculates the 95% prediction interval for the same values of the regressors as in Example 6.5. The only
difference is the option interval="prediction" instead of interval="confidence". The results are
the same as those manually calculated by Wooldridge (2019).

Output of Script 6.8: Example-6-6.R

> data(gpa2, package=’wooldridge’)

> # Regress (as before)
> reg <- lm(colgpa~sat+hsperc+hsize+I(hsize^2),data=gpa2)

> # Define three sets of regressor variables (as before)
> cvalues <- data.frame(sat=c(1200,900,1400), hsperc=c(30,20,5),
> hsize=c(5,3,1))

> # Point estimates and 95% prediction intervals for these
> predict(reg, cvalues, interval = "prediction")

fit lwr upr
1 2.700075 1.601749 3.798402
2 2.425282 1.327292 3.523273
3 3.457448 2.358452 4.556444

6.2.3. Effect Plots for Nonlinear Specifications

In models with quadratic or other nonlinear terms, the coefficients themselves are often difficult
to interpret directly. We have to do additional calculations to obtain the partial effect at different
values of the regressors or derive the extreme points. In Example 6.2, we found the number of rooms
implying the minimum predicted house price to be around 4.4.



6.2. Prediction 149

For a better visual understanding of the implications of our model, it is often useful to calculate
predictions for different values of one regressor of interest while keeping the other regressors fixed at
certain values like their overall sample means. By plotting the results against the regressor value, we
get a very intuitive graph showing the estimated ceteris paribus effects of the regressor.

We already know how to calculate predictions and their confidence intervals from Section 6.2.1.
Script 6.9 (Effects-Manual.R) repeats the regression from Example 6.2 and creates an effects plot
for the number of rooms manually. The number of rooms is varied between 4 and 8 and the other
variables are set to their respective sample means for all predictions. The regressor values and the
implied predictions are shown in a table and then plotted using matplot for automatically including
the confidence bands. The resulting graph is shown in Figure 6.1(a).

The package effects provides the convenient command effect. It creates the same kind of
plots we just generated, but it is more convenient to use and the result is nicely formatted. After
storing the regression results in variable res, Figure 6.1(b) is produced with the simple command

plot( effect("rooms",res) )

The full code including loading the data and running the regression is in Script 6.10
(Effects-Automatic.R). We see the minimum at a number of rooms of around 4.4. We
also see the observed values of rooms as ticks on the axis. Obviously nearly all observations are in
the area right of the minimum where the slope is positive.

Output of Script 6.9: Effects-Manual.R

> # Repeating the regression from Example 6.2:
> data(hprice2, package=’wooldridge’)

> res <- lm( log(price) ~ log(nox)+log(dist)+rooms+I(rooms^2)+stratio,
> data=hprice2)

> # Predictions: Values of the regressors:
> # rooms = 4-8, all others at the sample mean:
> X <- data.frame(rooms=seq(4,8),nox=5.5498,dist=3.7958,stratio=18.4593)

> # Calculate predictions and confidence interval:
> pred <- predict(res, X, interval = "confidence")

> # Table of regressor values, predictions and CI:
> cbind(X,pred)

rooms nox dist stratio fit lwr upr
1 4 5.5498 3.7958 18.4593 9.661698 9.499807 9.823589
2 5 5.5498 3.7958 18.4593 9.676936 9.610210 9.743661
3 6 5.5498 3.7958 18.4593 9.816696 9.787050 9.846341
4 7 5.5498 3.7958 18.4593 10.080978 10.042404 10.119553
5 8 5.5498 3.7958 18.4593 10.469783 10.383355 10.556211

> # Plot
> matplot(X$rooms, pred, type="l", lty=c(1,2,2))

Script 6.10: Effects-Automatic.R
# Repeating the regression from Example 6.2:
data(hprice2, package=’wooldridge’)

res <- lm( log(price) ~ log(nox)+log(dist)+rooms+I(rooms^2)+stratio,
data=hprice2)



150 6. Multiple Regression Analysis: Further Issues

Figure 6.1. Nonlinear Effects in Example 6.2

4 5 6 7 8

9.
6

9.
8

10
.0

10
.4

X$rooms

pr
ed

rooms effect plot

rooms
lo

g(
pr

ic
e)

 9.6

 9.8

10.0

10.2

10.4

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

(a) Manual Calculations (Script 6.9) (c) Automatic Calculations (Script 6.10)

# Automatic effects plot using the package "effects"
library(effects)
plot( effect("rooms",res) )



7. Multiple Regression Analysis with
Qualitative Regressors

Many variables of interest are qualitative rather than quantitative. Examples include gender, race,
labor market status, marital status, and brand choice. In this chapter, we discuss the use of qualitative
variables as regressors. Wooldridge (2019, Section 7.5) also covers linear probability models with a
binary dependent variable in a linear regression. Since this does not change the implementation, we
will skip this topic here and cover binary dependent variables in Chapter 17.

Qualitative information can be represented as binary or dummy variables which can only take the
value zero or one. In Section 7.1, we see that dummy variables can be used as regressors just as any
other variable. An even more natural way to store yes/no type of information in R is to use logical
variables which can also be directly used as regressors, see Section 7.2.

While qualitative variables with more than two outcomes can be represented by a set of dummy
variables, the more natural and convenient way to do this in R are factor variables as covered in
Section 7.3. A special case in which we wish to break a numeric variable into categories is discussed
in Section 7.4. Finally, Section 7.5 revisits interaction effects and shows how these can be used with
factor variables to conveniently allow and test for difference in the regression equation.

7.1. Linear Regression with Dummy Variables as Regressors

If qualitative data are stored as dummy variables (i.e. variables taking the values zero or one), these
can easily be used as regressors in linear regression. If a single dummy variable is used in a model, its
coefficient represents the difference in the intercept between groups, see Wooldridge (2019, Section
7.2).

A qualitative variable can also take g > 2 values. A variable MobileOS could for example take one
of the g = 4 values “Android”, “iOS”, “Windows”, or “other”. This information can be represented
by g − 1 dummy variables, each taking the values zero or one, where one category is left out to
serve as a reference category. They take the value one if the respective operating system is used and
zero otherwise. Wooldridge (2019, Section 7.3) gives more information on these variables and their
interpretation.

Here, we are concerned with implementing linear regressions with dummy variables as regressors.
Everything works as before once we have generated the dummy variables. In the example data sets
provided with Wooldridge (2019), this has usually already been done for us, so we don’t have to
learn anything new in terms of implementation. We show two examples.

Wooldridge, Example 7.1: Hourly Wage Equation7.1

We are interested in the wage differences by gender and regress the hourly wage on a dummy variable
which is equal to one for females and zero for males. We also include regressors for education, expe-
rience, and tenure. The implementation with lm is standard and the dummy variable female is used
just as any other regressor as shown in Script 7.1 (Example-7-1.R). Its estimated coefficient of −1.81
indicates that on average, a woman makes $1.81 per hour less than a man with the same education,
experience, and tenure.



152 7. Multiple Regression Analysis with Qualitative Regressors

Output of Script 7.1: Example-7-1.R

> data(wage1, package=’wooldridge’)

> lm(wage ~ female+educ+exper+tenure, data=wage1)

Call:
lm(formula = wage ~ female + educ + exper + tenure, data = wage1)

Coefficients:
(Intercept) female educ exper tenure

-1.5679 -1.8109 0.5715 0.0254 0.1410

Wooldridge, Example 7.6: Log Hourly Wage Equation7.6

We used log wage as the dependent variable and distinguish gender and marital status using a quali-
tative variable with the four outcomes “single female”, “single male”, “married female”, and “married
male”. We actually implement this regression using an interaction term between married and female
in Script 7.2 (Example-7-6.R). Relative to the reference group of single males with the same education,
experience, and tenure, married males make about 21.3% more (the coefficient of married), and single
females make about 11.0% less (the coefficient of female). The coefficient of the interaction term im-
plies that married females make around 30.1%-21.3%=8.7% less than single females, 30.1%+11.0%=41.1%
less than married males, and 30.1%+11.0%-21.3%=19.8% less than single males. Note once again that
the approximate interpretation as percent may be inaccurate, see Section 6.1.3.

Output of Script 7.2: Example-7-6.R

> data(wage1, package=’wooldridge’)

> lm(log(wage)~married*female+educ+exper+I(exper^2)+tenure+I(tenure^2),
> data=wage1)

Call:
lm(formula = log(wage) ~ married * female + educ + exper + I(exper^2) +

tenure + I(tenure^2), data = wage1)

Coefficients:
(Intercept) married female educ
0.3213781 0.2126757 -0.1103502 0.0789103

exper I(exper^2) tenure I(tenure^2)
0.0268006 -0.0005352 0.0290875 -0.0005331

married:female
-0.3005931

7.2. Logical Variables

A natural way for storing qualitative yes/no information in R is to use logical variables introduced
in Section 1.2.3. They can take the values TRUE or FALSE and can be transformed into a 0/1 dummy
variable with the function as.numeric where TRUE=1 and FALSE=0. 0/1-coded dummies can vice
versa be transformed into logical variables with as.logical.



7.2. Logical Variables 153

Instead of transforming logical variables into dummies, they can be directly used as regressors.
The coefficient is then named varnameTRUE. Script 7.3 (Example-7-1-logical.R) repeats the
analysis of Example 7.1 with the regressor female being coded as a logical instead of a 0/1 dummy
variable.

Output of Script 7.3: Example-7-1-logical.R

> data(wage1, package=’wooldridge’)

> # replace "female" with logical variable
> wage1$female <- as.logical(wage1$female)

> table(wage1$female)

FALSE TRUE
274 252

> # regression with logical variable
> lm(wage ~ female+educ+exper+tenure, data=wage1)

Call:
lm(formula = wage ~ female + educ + exper + tenure, data = wage1)

Coefficients:
(Intercept) femaleTRUE educ exper tenure

-1.5679 -1.8109 0.5715 0.0254 0.1410

In real-world data sets, qualitative information is often not readily coded as logical or dummy
variables, so we might want to create our own regressors. Suppose a qualitative variable OS takes
one of the three string values “Android”, “iOS”, “Windows”, or “other”. We can manually define
the three relevant logical variables with “Android” as the reference category with

iOS <- OS=="iOS"
wind <- OS=="Windows"
oth <- OS=="other"

The package dummies provides convenient functions to automatically generate dummy variables.
But a even more convenient and elegant way to deal with qualitative variables in R are factor vari-
ables discussed in the next section.



154 7. Multiple Regression Analysis with Qualitative Regressors

7.3. Factor variables

We have introduced factor variables in Section 1.2.3. They take one of a given set of outcomes
which can be labeled arbitrarily. This makes factors the natural variable type to store qualitative
information. If a data set is imported from a text file, string columns are automatically converted
into factor variables. We can transform any variable into a factor variable using as.factor.

One of the convenient features of factor variables is that they can be directly added to the list of
regressors. R is clever enough to implicitly add g− 1 dummy variables if the factor has g outcomes.
As a reference category, the first category is left out by default. The command relevel(var,val)
chooses the outcome val as the reference for variable var.

Script 7.4 (Regr-Factors.R) shows how factor variables are used. It uses the data set CPS1985
from the package AER.1 This data set is similar to the one used in Examples 7.1 and 7.6 in that it
contains wage and other data for 534 individuals. Many of the variables like gender and occupation
are qualitative and readily defined as factors in this data set. The frequency tables for these two
variables are shown in the output. The variable gender has two categories male and female. The
variable occupation has six categories.

When we directly add these factors as regressors, R automatically chooses the first categories male
and worker as the reference and implicitly enters dummy variables for the other categories. In the
output, the coefficients are labeled with a combination of the variable and category name. As an
example, the estimated coefficient of -0.224 for genderfemale implies that women make about
22.4% less than men who are the same in terms of the other regressors. Employees in management
positions earn around 15.3% more than otherwise equal workers (who are the reference category).

We can choose different reference categories using the relevel command. In the example, we
choose female and management. When we rerun the same regression command, we see the ex-
pected results: Variables like education and experience get the same coefficients. The dummy
variable for males gets the negative of what the females got previously. Obviously, it is equivalent to
say “female log wages are lower by 0.224” and “male log wages are higher by 0.224”.

The coefficients for the occupation are now relative to management. From the first regression we
already knew that managers make 15.3% more than workers, so it is not surprising that in the second
regression we find that workers make 15.3% less than managers. The other occupation coefficients
are lower by 0.15254 implying the same relative comparisons as in the first results.

We introduced ANOVA tables in Section 6.1.5. They give a quick overview over the signifi-
cance and relative importance of all regresssors, especially if the effect of some of them is captured
by several parameters. This is also the case with factor variables: In the example of Script 7.4
(Regr-Factors.R), the effect of occupation is captured by the five parameters of the respective
dummy variables. Script 7.5 (Regr-Factors-Anova.R) shows the ANOVA Type II table. We see
that occupation has a highly significant effect on wages. The explained sum of squares (after control-
ling for all other regressors) is higher than that of gender. But since it is based on five parameters
instead of one, the F statistic is lower.

1Remember that packages have to installed once before we can use them. With an active internet connection, the command
to automatically do this is install.packages("AER").



7.3. Factor variables 155

Output of Script 7.4: Regr-Factors.R

> data(CPS1985,package="AER")

> # Table of categories and frequencies for two factor variables:
> table(CPS1985$gender)

male female
289 245

> table(CPS1985$occupation)

worker technical services office sales management
156 105 83 97 38 55

> # Directly using factor variables in regression formula:
> lm(log(wage) ~ education+experience+gender+occupation, data=CPS1985)

Call:
lm(formula = log(wage) ~ education + experience + gender + occupation,

data = CPS1985)

Coefficients:
(Intercept) education experience

0.97629 0.07586 0.01188
genderfemale occupationtechnical occupationservices

-0.22385 0.14246 -0.21004
occupationoffice occupationsales occupationmanagement

-0.05477 -0.20757 0.15254

> # Manually redefine the reference category:
> CPS1985$gender <- relevel(CPS1985$gender,"female")

> CPS1985$occupation <- relevel(CPS1985$occupation,"management")

> # Rerun regression:
> lm(log(wage) ~ education+experience+gender+occupation, data=CPS1985)

Call:
lm(formula = log(wage) ~ education + experience + gender + occupation,

data = CPS1985)

Coefficients:
(Intercept) education experience

0.90498 0.07586 0.01188
gendermale occupationworker occupationtechnical

0.22385 -0.15254 -0.01009
occupationservices occupationoffice occupationsales

-0.36259 -0.20731 -0.36011



156 7. Multiple Regression Analysis with Qualitative Regressors

Output of Script 7.5: Regr-Factors-Anova.R

> data(CPS1985,package="AER")

> # Regression
> res <- lm(log(wage) ~ education+experience+gender+occupation, data=CPS1985)

> # ANOVA table
> car::Anova(res)
Anova Table (Type II tests)

Response: log(wage)
Sum Sq Df F value Pr(>F)

education 10.981 1 56.925 2.010e-13 ***
experience 9.695 1 50.261 4.365e-12 ***
gender 5.414 1 28.067 1.727e-07 ***
occupation 7.153 5 7.416 9.805e-07 ***
Residuals 101.269 525
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

7.4. Breaking a Numeric Variable Into Categories

Sometimes, we do not use a numeric variable directly in a regression model because the implied
linear relation seems implausible or inconvenient to interpret. As an alternative to working with
transformations such as logs and quadratic terms, it sometimes makes sense to estimate different
levels for different ranges of the variable. Wooldridge (2019, Example 7.8) gives the example of the
ranking of a law school and how it relates to the starting salary of its graduates.

Given a numeric variable, we need to generate a categorical (factor) variable to represent the range
into which the rank of a school falls. In R, the command cut is very convenient for this. It takes a
numeric variable and a vector of cut points and returns a factor variable. By default, the upper cut
points are included in the corresponding range.

Wooldridge, Example 7.8: Effects of Law School Rankings on Starting
Salaries7.8

The variable rank of the data set LAWSCH85.dta is the rank of the law school as a number between
1 and 175. We would like to compare schools in the top 10, ranks 11–25, 26–40, 41–60, and 61–100
to the reference group of ranks above 100. So in Script 7.6 (Example-7-8.R), we store the cut points
0,10,25,40,60,100, and 175 in a variable cutpts. In the data frame data, we create our new variable
rankcat using the cut command.
To be consistent with Wooldridge (2019), we do not want the top 10 schools as a reference category but
the last category. It is chosen using the relevel command. The regression results imply that graduates
from the top 10 schools collect a starting salary which is around 70% higher than those of the schools
below rank 100. In fact, this approximation is inaccurate with these large numbers and the coefficient
of 0.7 actually implies a difference of exp(0.7)-1=1.013 or 101.3%.
The ANOVA table at the end of the output shows that at a 5% significance level, the school rank is the
only variable that has a significant explanatory power for the salary in this specification.



7.4. Breaking a Numeric Variable Into Categories 157

Output of Script 7.6: Example-7-8.R

> data(lawsch85, package=’wooldridge’)

> # Define cut points for the rank
> cutpts <- c(0,10,25,40,60,100,175)

> # Create factor variable containing ranges for the rank
> lawsch85$rankcat <- cut(lawsch85$rank, cutpts)

> # Display frequencies
> table(lawsch85$rankcat)

(0,10] (10,25] (25,40] (40,60] (60,100] (100,175]
10 16 13 18 37 62

> # Choose reference category
> lawsch85$rankcat <- relevel(lawsch85$rankcat,"(100,175]")

> # Run regression
> (res <- lm(log(salary)~rankcat+LSAT+GPA+log(libvol)+log(cost), data=lawsch85))

Call:
lm(formula = log(salary) ~ rankcat + LSAT + GPA + log(libvol) +

log(cost), data = lawsch85)

Coefficients:
(Intercept) rankcat(0,10] rankcat(10,25] rankcat(25,40]
9.1652952 0.6995659 0.5935434 0.3750763

rankcat(40,60] rankcat(60,100] LSAT GPA
0.2628191 0.1315950 0.0056908 0.0137255

log(libvol) log(cost)
0.0363619 0.0008412

> # ANOVA table
> car::Anova(res)
Anova Table (Type II tests)

Response: log(salary)
Sum Sq Df F value Pr(>F)

rankcat 1.86887 5 50.9630 < 2e-16 ***
LSAT 0.02532 1 3.4519 0.06551 .
GPA 0.00025 1 0.0342 0.85353
log(libvol) 0.01433 1 1.9534 0.16467
log(cost) 0.00001 1 0.0011 0.97336
Residuals 0.92411 126
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



158 7. Multiple Regression Analysis with Qualitative Regressors

7.5. Interactions and Differences in Regression Functions Across
Groups

Dummy and factor variables can be interacted just like any other variable. Wooldridge (2019, Section
7.4) discusses the specification and interpretation in this setup. An important case is a model in
which one or more dummy variables are interacted with all other regressors. This allows the whole
regression model to differ by groups of observations identified by the dummy variable(s).

The example from Wooldridge (2019, Section 7.4) is replicated in Script 7.7 (Dummy-Interact.R).
Note that the example only applies to the subset of data with spring==1. We use the subset option
of lm directly to define the estimation sample. Other than that, the script does not introduce any
new syntax but combines two tricks we have seen previously:

• The dummy variable female is interacted with all other regressors using the “*” formula
syntax with the other variables contained in parentheses, see Section 6.1.6.

• The F test for all interaction effects is performed using the command linearHypothesis
from the package car. The function matchCoefs is used to specify the null hypothesis that
all coefficients with the expression female in their names are zero, see Section 4.3.

Output of Script 7.7: Dummy-Interact.R

> data(gpa3, package=’wooldridge’)

> # Model with full interactions with female dummy (only for spring data)
> reg<-lm(cumgpa~female*(sat+hsperc+tothrs), data=gpa3, subset=(spring==1))

> summary(reg)

Call:
lm(formula = cumgpa ~ female * (sat + hsperc + tothrs), data = gpa3,

subset = (spring == 1))

Residuals:
Min 1Q Median 3Q Max

-1.51370 -0.28645 -0.02306 0.27555 1.24760

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.4808117 0.2073336 7.142 5.17e-12 ***
female -0.3534862 0.4105293 -0.861 0.38979
sat 0.0010516 0.0001811 5.807 1.40e-08 ***
hsperc -0.0084516 0.0013704 -6.167 1.88e-09 ***
tothrs 0.0023441 0.0008624 2.718 0.00688 **
female:sat 0.0007506 0.0003852 1.949 0.05211 .
female:hsperc -0.0005498 0.0031617 -0.174 0.86206
female:tothrs -0.0001158 0.0016277 -0.071 0.94331
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4678 on 358 degrees of freedom
Multiple R-squared: 0.4059, Adjusted R-squared: 0.3943
F-statistic: 34.95 on 7 and 358 DF, p-value: < 2.2e-16

> # F-Test from package "car". H0: the interaction coefficients are zero
> # matchCoefs(...) selects all coeffs with names containing "female"



7.5. Interactions and Differences in Regression Functions Across Groups 159

> library(car)

> linearHypothesis(reg, matchCoefs(reg, "female"))
Linear hypothesis test

Hypothesis:
female = 0
female:sat = 0
female:hsperc = 0
female:tothrs = 0

Model 1: restricted model
Model 2: cumgpa ~ female * (sat + hsperc + tothrs)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 362 85.515
2 358 78.355 4 7.1606 8.1791 2.545e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We can estimate the same model parameters by running two separate regressions, one for females
and one for males, see Script 7.8 (Dummy-Interact-Sep.R). We see that in the joint model, the
parameters without interactions ((Intercept), sat, hsperc, and tothrs) apply to the males
and the interaction parameters reflect the differences to the males.

To reconstruct the parameters for females from the joint model, we need to add the two respective
parameters. The intercept for females is 1.4808117− 0.3534862 = 1.127325 and the coefficient of sat
for females is 0.0010516 + 0.0007506 = 0.0018022.

Output of Script 7.8: Dummy-Interact-Sep.R

> data(gpa3, package=’wooldridge’)

> # Estimate model for males (& spring data)
> lm(cumgpa~sat+hsperc+tothrs, data=gpa3, subset=(spring==1&female==0))

Call:
lm(formula = cumgpa ~ sat + hsperc + tothrs, data = gpa3, subset = (spring ==

1 & female == 0))

Coefficients:
(Intercept) sat hsperc tothrs

1.480812 0.001052 -0.008452 0.002344

> # Estimate model for females (& spring data)
> lm(cumgpa~sat+hsperc+tothrs, data=gpa3, subset=(spring==1&female==1))

Call:
lm(formula = cumgpa ~ sat + hsperc + tothrs, data = gpa3, subset = (spring ==

1 & female == 1))

Coefficients:
(Intercept) sat hsperc tothrs

1.127325 0.001802 -0.009001 0.002228





8. Heteroscedasticity

The homoscedasticity assumptions SLR.5 for the simple regression model and MLR.5 for the multiple
regression model require that the variance of the error terms is unrelated to the regressors, i.e.

Var(u|x1, . . . , xk) = σ2. (8.1)

Unbiasedness and consistency (Theorems 3.1, 5.1) do not depend on this assumption, but the sam-
pling distribution (Theorems 3.2, 4.1, 5.2) does. If homoscedasticity is violated, the standard errors
are invalid and all inferences from t, F and other tests based on them are unreliable. Also the
(asymptotic) efficiency of OLS (Theorems 3.4, 5.3) depends on homoscedasticity. Generally, ho-
moscedasticity is difficult to justify from theory. Different kinds of individuals might have different
amounts of unobserved influences in ways that depend on regressors.

We cover three topics: Section 8.1 shows how the formula of the estimated variance-covariance
can be adjusted so it does not require homoscedasticity. In this way, we can use OLS to get unbiased
and consistent parameter estimates and draw inference from valid standard errors and tests. Section
8.2 presents tests for the existence of heteroscedasticity. Section 8.3 discusses weighted least squares
(WLS) as an alternative to OLS. This estimator can be more efficient in the presence of heteroscedas-
ticity.

8.1. Heteroscedasticity-Robust Inference

Wooldridge (2019, Equation 8.4 in Section 8.2) presents formulas for heteroscedasticity-robust stan-
dard errors. In R, an easy way to do these calculations is to use the package car which we have
used before. It provides the command hccm (for heteroscedasticity-corrected covariance matrices)
that can produce several refined versions of the White formula presented by Wooldridge (2019).1

If the estimation results obtained by lm are stored in the variable reg, the variance-covariance
matrix can be calculated using

• hccm(reg) for the default refined version of White’s robust variance-covariance matrix
• hccm(reg,type="hc0") for the classical version of White’s robust variance-covariance ma-

trix presented by Wooldridge (2019, Section 8.2).
• hccm(reg,type="hc1") for a version with a small sample correction. This is the default

behavior of Stata.
• Other versions can be chosen with the type option, see Long and Ervin (2000) for details on

these versions.

1The package sandwich provides the same functionality as hccm using the specification vcovHC and can be used more
flexibly for advanced analyses.



162 8. Heteroscedasticity

For a convenient regression table with coefficients, standard errors, t statistics and their p values
based on arbitrary variance-covariance matrices, the command coeftest from the package lmtest
is useful. In addition to the regression results reg, it expects either a readily calculated variance-
covariance matrix or the function (such as hccm) to calculate it. The syntax is

• coeftest(reg) for the default homoscedasticity-based standard errors
• coeftest(reg, vcov=hccm) for the refined version of White’s robust SE
• coeftest(reg, vcov=hccm(reg,type="hc0")) for the classical version of White’s ro-

bust SE. Other versions can be chosen accordingly.
For general F-tests, we have repeatedly used the command linearHypothesis from the package

car. The good news is that it also accepts alternative variance-covariance specifications and is also
compatible with hccm. To perform F tests of the joint hypothesis described in myH0 for an estimated
model reg, the syntax is2

• linearHypothesis(reg, myH0) for the default homoscedasticity-based covariance matrix
• linearHypothesis(reg, myH0, vcov=hccm) for the refined version of White’s robust

covariance matrix
• linearHypothesis(reg, myH0, vcov=hccm(reg,type="hc0")) for the classical ver-

sion of White’s robust covariance matrix. Again, other types can be chosen accordingly.

Wooldridge, Example 8.2: Heteroscedasticity-Robust Inference8.2

Scripts 8.1 (Example-8-2.R) and 8.2 (Example-8-2-cont.R) demonstrate these commands. After the
estimation, the regression table is displayed for the usual standard errors and the refined robust standard
errors. The classical White version reported in Wooldridge (2019) can be obtained using the syntax
printed above. For the F tests shown in Script 8.2 (Example-8-2-cont.R), three versions are calculated
and displayed.
The results generally do not differ a lot between the different versions. This is an indication that het-
eroscedasticity might not be a big issue in this example. To be sure, we would like to have a formal test
as discussed in the next section.

2For a discussion how to formulate null hypotheses, see Section 4.3.



8.1. Heteroscedasticity-Robust Inference 163

Output of Script 8.1: Example-8-2.R

> data(gpa3, package=’wooldridge’)

> # load packages (which need to be installed!)
> library(lmtest); library(car)

> # Estimate model (only for spring data)
> reg <- lm(cumgpa~sat+hsperc+tothrs+female+black+white,
> data=gpa3, subset=(spring==1))

> # Usual SE:
> coeftest(reg)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.47006477 0.22980308 6.3971 4.942e-10 ***
sat 0.00114073 0.00017856 6.3885 5.197e-10 ***
hsperc -0.00856636 0.00124042 -6.9060 2.275e-11 ***
tothrs 0.00250400 0.00073099 3.4255 0.0006847 ***
female 0.30343329 0.05902033 5.1412 4.497e-07 ***
black -0.12828368 0.14737012 -0.8705 0.3846164
white -0.05872173 0.14098956 -0.4165 0.6772953
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # Refined White heteroscedasticity-robust SE:
> coeftest(reg, vcov=hccm)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.47006477 0.22938036 6.4089 4.611e-10 ***
sat 0.00114073 0.00019532 5.8402 1.169e-08 ***
hsperc -0.00856636 0.00144359 -5.9341 6.963e-09 ***
tothrs 0.00250400 0.00074930 3.3418 0.00092 ***
female 0.30343329 0.06003964 5.0539 6.911e-07 ***
black -0.12828368 0.12818828 -1.0007 0.31762
white -0.05872173 0.12043522 -0.4876 0.62615
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



164 8. Heteroscedasticity

Output of Script 8.2: Example-8-2-cont.R

> # F-Tests using different variance-covariance formulas:
> myH0 <- c("black","white")

> # Ususal VCOV
> linearHypothesis(reg, myH0)
Linear hypothesis test

Hypothesis:
black = 0
white = 0

Model 1: restricted model
Model 2: cumgpa ~ sat + hsperc + tothrs + female + black + white

Res.Df RSS Df Sum of Sq F Pr(>F)
1 361 79.362
2 359 79.062 2 0.29934 0.6796 0.5075

> # Refined White VCOV
> linearHypothesis(reg, myH0, vcov=hccm)
Linear hypothesis test

Hypothesis:
black = 0
white = 0

Model 1: restricted model
Model 2: cumgpa ~ sat + hsperc + tothrs + female + black + white

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 361
2 359 2 0.6725 0.5111

> # Classical White VCOV
> linearHypothesis(reg, myH0, vcov=hccm(reg,type="hc0"))
Linear hypothesis test

Hypothesis:
black = 0
white = 0

Model 1: restricted model
Model 2: cumgpa ~ sat + hsperc + tothrs + female + black + white

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 361
2 359 2 0.7478 0.4741



8.2. Heteroscedasticity Tests 165

8.2. Heteroscedasticity Tests

The Breusch-Pagan (BP) test for heteroscedasticity is easy to implement with basic OLS routines.
After a model

y = β0 + β1x1 + · · ·+ βkxk + u (8.2)

is estimated, we obtain the residuals ûi for all observations i = 1, . . . , n. We regress their squared
value on all independent variables from the original equation. We can either look at the standard F
test of overall significance printed for example by the summary of lm results. Or we can use an LM
test by multiplying the R2 from the second regression with the number of observations.

In R, this is easily done. Remember that the residuals from a regression can be obtained by the
resid function. Their squared value can be stored in a new variable to be used as a dependent
variable in the second stage. Alternatively, the function call can be directly entered as the left-hand
side of the regression formula as demonstrated in Script 8.3 (Example-8-4.R).

The LM version of the BP test is even more convenient to use with the bptest command provided
by the lmtest package. There is no need to perform the second regression and we directly get the
test statistic and corresponding p value.

Wooldridge, Example 8.4: Heteroscedasticity in a Housing Price Equation8.4

Script 8.3 (Example-8-4.R) implements the F and LM versions of the BP test. The command bptest
simply takes the regression results as an argument and delivers a test statistic of LM = 14.09. The cor-
responding p value is smaller than 0.003 so we reject homoscedasticity for all reasonable significance
levels.
The output also shows the manual implementation of a second stage regression where we regress
squared residuals on the independent variables. We can directly interpret the reported F statistic of
5.34 and its p value of 0.002 as the F version of the BP test. We can manually calculate the LM statistic
by multiplying the reported R2 = 0.16 with the number of observations n = 88.
We replicate the test for an alternative model with logarithms discussed by Wooldridge (2019) together
with the White test in Example 8.5 and Script 8.4 (Example-8-5.R).

Output of Script 8.3: Example-8-4.R

> data(hprice1, package=’wooldridge’)

> # Estimate model
> reg <- lm(price~lotsize+sqrft+bdrms, data=hprice1)

> reg

Call:
lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)

Coefficients:
(Intercept) lotsize sqrft bdrms
-21.770308 0.002068 0.122778 13.852522

> # Automatic BP test
> library(lmtest)

> bptest(reg)

studentized Breusch-Pagan test



166 8. Heteroscedasticity

data: reg
BP = 14.092, df = 3, p-value = 0.002782

> # Manual regression of squared residuals
> summary(lm( resid(reg)^2 ~ lotsize+sqrft+bdrms, data=hprice1))

Call:
lm(formula = resid(reg)^2 ~ lotsize + sqrft + bdrms, data = hprice1)

Residuals:
Min 1Q Median 3Q Max

-9044 -2212 -1256 -97 42582

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.523e+03 3.259e+03 -1.694 0.09390 .
lotsize 2.015e-01 7.101e-02 2.838 0.00569 **
sqrft 1.691e+00 1.464e+00 1.155 0.25128
bdrms 1.042e+03 9.964e+02 1.046 0.29877
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6617 on 84 degrees of freedom
Multiple R-squared: 0.1601, Adjusted R-squared: 0.1301
F-statistic: 5.339 on 3 and 84 DF, p-value: 0.002048

The White test is a variant of the BP test where in the second stage, we do not regress the squared
first-stage residuals on the original regressors only. Instead, we add interactions and polynomials of
them or on the fitted values ŷ and ŷ2. This can easily be done in a manual second-stage regression
remembering that the fitted values can be obtained with the fitted function.

Conveniently, we can also use the bptest command to do the calculations of the LM version of
the test including the p values automatically. All we have to do is to explain that in the second stage
we want a different set of regressors. Given the original regression results are stored as reg, this is
done by specifying

bptest(reg, ~ regressors)

In the “special form” of the White test, the regressors are fitted and their squared values, so the
command can be compactly written as

bptest( reg, ~ fitted(reg) + I(fitted(reg)^2) )

Wooldridge, Example 8.5: BP and White test in the Log Housing Price Equa-
tion8.5

Script 8.4 (Example-8-5.R) implements the BP and the White test for a model that now contains loga-
rithms of the dependent variable and two independent variables. The LM versions of both the BP and
the White test do not reject the null hypothesis at conventional significance levels with p values of 0.238
and 0.178, respectively.



8.2. Heteroscedasticity Tests 167

Output of Script 8.4: Example-8-5.R

> data(hprice1, package=’wooldridge’)

> # Estimate model
> reg <- lm(log(price)~log(lotsize)+log(sqrft)+bdrms, data=hprice1)

> reg

Call:
lm(formula = log(price) ~ log(lotsize) + log(sqrft) + bdrms,

data = hprice1)

Coefficients:
(Intercept) log(lotsize) log(sqrft) bdrms

-1.29704 0.16797 0.70023 0.03696

> # BP test
> library(lmtest)

> bptest(reg)

studentized Breusch-Pagan test

data: reg
BP = 4.2232, df = 3, p-value = 0.2383

> # White test
> bptest(reg, ~ fitted(reg) + I(fitted(reg)^2) )

studentized Breusch-Pagan test

data: reg
BP = 3.4473, df = 2, p-value = 0.1784



168 8. Heteroscedasticity

8.3. Weighted Least Squares

Weighted Least Squares (WLS) attempts to provide a more efficient alternative to OLS. It is a special
version of a feasible generalized least squares (FGLS) estimator. Instead of the sum of squared
residuals, their weighted sum is minimized. If the weights are inversely proportional to the variance,
the estimator is efficient. Also the usual formula for the variance-covariance matrix of the parameter
estimates and standard inference tools are valid.

We can obtain WLS parameter estimates by multiplying each variable in the model with the square
root of the weight as shown by Wooldridge (2019, Section 8.4). In R, it is more convenient to use
the option weight=... of the command lm. This provides a more concise syntax and takes care of
correct residuals, fitted values, predictions, and the like in terms of the original variables.

Wooldridge, Example 8.6: Financial Wealth Equation8.6

Script 8.5 (Example-8-6.R) implements both OLS and WLS estimation for a regression of financial wealth
(nettfa) on income (inc), age (age), gender (male) and eligibility for a pension plan (e401k) using the
data set 401ksubs.dta. Following Wooldridge (2019), we assume that the variance is proportional to
the income variable inc. Therefore, the optimal weight is 1

inc which is given as the weight in the lm
call.

Output of Script 8.5: Example-8-6.R

> data(k401ksubs, package=’wooldridge’)

> # OLS (only for singles: fsize==1)
> lm(nettfa ~ inc + I((age-25)^2) + male + e401k,
> data=k401ksubs, subset=(fsize==1))

Call:
lm(formula = nettfa ~ inc + I((age - 25)^2) + male + e401k, data = k401ksubs,

subset = (fsize == 1))

Coefficients:
(Intercept) inc I((age - 25)^2) male
-20.98499 0.77058 0.02513 2.47793

e401k
6.88622

> # WLS
> lm(nettfa ~ inc + I((age-25)^2) + male + e401k, weight=1/inc,
> data=k401ksubs, subset=(fsize==1))

Call:
lm(formula = nettfa ~ inc + I((age - 25)^2) + male + e401k, data = k401ksubs,

subset = (fsize == 1), weights = 1/inc)

Coefficients:
(Intercept) inc I((age - 25)^2) male
-16.70252 0.74038 0.01754 1.84053

e401k
5.18828



8.3. Weighted Least Squares 169

We can also use heteroscedasticity-robust statistics from Section 8.1 to account for the fact that our
variance function might be misspecified. Script 8.6 (WLS-Robust.R) repeats the WLS estimation
of Example 8.6 but reports non-robust and robust standard errors and t statistics. It replicates
Wooldridge (2019, Table 8.2) with the only difference that we use a refined version of the robust
SE formula. There is nothing special about the implementation. The fact that we used weights is
correctly accounted for in the following calculations.

Output of Script 8.6: WLS-Robust.R

> data(k401ksubs, package=’wooldridge’)

> # WLS
> wlsreg <- lm(nettfa ~ inc + I((age-25)^2) + male + e401k,
> weight=1/inc, data=k401ksubs, subset=(fsize==1))

> # non-robust results
> library(lmtest); library(car)

> coeftest(wlsreg)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -16.7025205 1.9579947 -8.5304 < 2.2e-16 ***
inc 0.7403843 0.0643029 11.5140 < 2.2e-16 ***
I((age - 25)^2) 0.0175373 0.0019315 9.0796 < 2.2e-16 ***
male 1.8405293 1.5635872 1.1771 0.239287
e401k 5.1882807 1.7034258 3.0458 0.002351 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # robust results (Refined White SE:)
> coeftest(wlsreg,hccm)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -16.7025205 2.2482355 -7.4292 1.606e-13 ***
inc 0.7403843 0.0752396 9.8403 < 2.2e-16 ***
I((age - 25)^2) 0.0175373 0.0025924 6.7650 1.742e-11 ***
male 1.8405293 1.3132477 1.4015 0.1612159
e401k 5.1882807 1.5743329 3.2955 0.0009994 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



170 8. Heteroscedasticity

The assumption made in Example 8.6 that the variance is proportional to a regressor is usually
hard to justify. Typically, we don’t not know the variance function and have to estimate it. This
feasible GLS (FGLS) estimator replaces the (allegedly) known variance function with an estimated
one.

We can estimate the relation between variance and regressors using a linear regression of the log of
the squared residuals from an initial OLS regression log(û2) as the dependent variable. Wooldridge
(2019, Section 8.4) suggests two versions for the selection of regressors:

• the regressors x1, . . . , xk from the original model similar to the BP test
• ŷ and ŷ2 from the original model similar to the White test

As the estimated error variance, we can use exp
( ̂log(û2)

)
. Its inverse can then be used as a weight

in WLS estimation.

Wooldridge, Example 8.7: Demand for Cigarettes8.7

Script 8.7 (Example-8-7.R) studies the relationship between daily cigarette consumption cigs, individ-
ual characteristics, and restaurant smoking restrictions restaurn. After the initial OLS regression, a BP
test is performed which clearly rejects homoscedasticity (see previous section for the BP test). After the
regression of log squared residuals on the regressors, the FGLS weights are calculated and used in the
WLS regression. See Wooldridge (2019) for a discussion of the results.



8.3. Weighted Least Squares 171

Output of Script 8.7: Example-8-7.R

> data(smoke, package=’wooldridge’)

> # OLS
> olsreg<-lm(cigs~log(income)+log(cigpric)+educ+age+I(age^2)+restaurn,
> data=smoke)

> olsreg

Call:
lm(formula = cigs ~ log(income) + log(cigpric) + educ + age +

I(age^2) + restaurn, data = smoke)

Coefficients:
(Intercept) log(income) log(cigpric) educ age

-3.639826 0.880268 -0.750862 -0.501498 0.770694
I(age^2) restaurn

-0.009023 -2.825085

> # BP test
> library(lmtest)

> bptest(olsreg)

studentized Breusch-Pagan test

data: olsreg
BP = 32.258, df = 6, p-value = 1.456e-05

> # FGLS: estimation of the variance function
> logu2 <- log(resid(olsreg)^2)

> varreg<-lm(logu2~log(income)+log(cigpric)+educ+age+I(age^2)+restaurn,
> data=smoke)

> # FGLS: WLS
> w <- 1/exp(fitted(varreg))

> lm(cigs~log(income)+log(cigpric)+educ+age+I(age^2)+restaurn,
> weight=w ,data=smoke)

Call:
lm(formula = cigs ~ log(income) + log(cigpric) + educ + age +

I(age^2) + restaurn, data = smoke, weights = w)

Coefficients:
(Intercept) log(income) log(cigpric) educ age

5.635463 1.295239 -2.940312 -0.463446 0.481948
I(age^2) restaurn

-0.005627 -3.461064





9. More on Specification and Data Issues

This chapter covers different topics of model specification and data problems. Section 9.1 asks how
statistical tests can help us specify the “correct” functional form given the numerous options we
have seen in Chapters 6 and 7. Section 9.2 shows some simulation results regarding the effects of
measurement errors in dependent and independent variables. Sections 9.3 covers missing values and
how R deals with them. In Section 9.4, we briefly discuss outliers and Section 9.5, the LAD estimator
is presented.

9.1. Functional Form Misspecification

We have seen many ways to flexibly specify the relation between the dependent variable and the
regressors. An obvious question to ask is whether or not a given specification is the “correct”
one. The Regression Equation Specification Error Test (RESET) is a convenient tool to test the null
hypothesis that the functional form is adequate.

Wooldridge (2019, Section 9.1) shows how to implement it using a standard F test in a second
regression that contains polynomials of fitted values from the original regression. We already know
how to obtain fitted values and run an F test, so the implementation is straightforward. Even more
convenient is the boxed routine resettest from the package lmtest. We just have to supply the
regression we want to test and the rest is done automatically.

Wooldridge, Example 9.2: Housing Price Equation9.2

Script 9.1 (Example-9-2-manual.R) implements the RESET test using the procedure described by
Wooldridge (2019) for the housing price model. As previously, we get the fitted values from the orig-
inal regression using fitted. Their polynomials are directly entered into the formula of the second
regression using the I() function, see Section 6.1.4. The F test is easily done using linearHypothesis
with matchCoefs as described in Section 4.3.
The same results are obtained more conveniently using the command resettest in Script 9.2
(Example-9-2-automatic.R). Both implementations deliver the same results: The test statistic is
F = 4.67 with a p value of p = 0.012, so we reject the null hypothesis that this equation is correctly
specified at a significance level of α = 5%.

Output of Script 9.1: Example-9-2-manual.R

> data(hprice1, package=’wooldridge’)

> # original linear regression
> orig <- lm(price ~ lotsize+sqrft+bdrms, data=hprice1)

> # regression for RESET test
> RESETreg <- lm(price ~ lotsize+sqrft+bdrms+I(fitted(orig)^2)+
> I(fitted(orig)^3), data=hprice1)

> RESETreg



174 9. More on Specification and Data Issues

Call:
lm(formula = price ~ lotsize + sqrft + bdrms + I(fitted(orig)^2) +

I(fitted(orig)^3), data = hprice1)

Coefficients:
(Intercept) lotsize sqrft

1.661e+02 1.537e-04 1.760e-02
bdrms I(fitted(orig)^2) I(fitted(orig)^3)

2.175e+00 3.534e-04 1.546e-06

> # RESET test. H0: all coeffs including "fitted" are=0
> library(car)

> linearHypothesis(RESETreg, matchCoefs(RESETreg,"fitted"))
Linear hypothesis test

Hypothesis:
I(fitted(orig)^2) = 0
I(fitted(orig)^3) = 0

Model 1: restricted model
Model 2: price ~ lotsize + sqrft + bdrms + I(fitted(orig)^2) + I(fitted(orig)^3)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 84 300724
2 82 269984 2 30740 4.6682 0.01202 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Output of Script 9.2: Example-9-2-automatic.R

> data(hprice1, package=’wooldridge’)

> # original linear regression
> orig <- lm(price ~ lotsize+sqrft+bdrms, data=hprice1)

> # RESET test
> library(lmtest)

> resettest(orig)

RESET test

data: orig
RESET = 4.6682, df1 = 2, df2 = 82, p-value = 0.01202



9.2. Measurement Error 175

Wooldridge (2019, Section 9.1-b) also discusses tests of non-nested models. As an example, a test
of both models against a comprehensive model containing all the regressors is mentioned. Such
a test can conveniently be implemented in R using the command encomptest from the package
lmtest. Script 9.3 (Nonnested-Test.R) shows this test in action for a modified version of the
Example 9.2.

The two alternative models for the housing price are

price = β0 + β1lotsize+ β2sqrft+ β3bdrms+ u (9.1)
price = β0 + β1 log(lotsize) + β2 log(sqrft) + β3bdrms+ u (9.2)

The output shows the “encompassing model” E with all variables. Both models are rejected against
this comprehensive model.

Output of Script 9.3: Nonnested-Test.R

> data(hprice1, package=’wooldridge’)

> # two alternative models
> model1 <- lm(price ~ lotsize + sqrft + bdrms, data=hprice1)

> model2 <- lm(price ~ log(lotsize) + log(sqrft) + bdrms, data=hprice1)

> # Test against comprehensive model
> library(lmtest)

> encomptest(model1,model2, data=hprice1)
Encompassing test

Model 1: price ~ lotsize + sqrft + bdrms
Model 2: price ~ log(lotsize) + log(sqrft) + bdrms
Model E: price ~ lotsize + sqrft + bdrms + log(lotsize) + log(sqrft)

Res.Df Df F Pr(>F)
M1 vs. ME 82 -2 7.8613 0.0007526 ***
M2 vs. ME 82 -2 7.0508 0.0014943 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

9.2. Measurement Error

If a variable is not measured accurately, the consequences depend on whether the measurement
error affects the dependent or an explanatory variable. If the dependent variable is mismeasured,
the consequences can be mild. If the measurement error is unrelated to the regressors, the parameter
estimates get less precise, but they are still consistent and the usual inferences from the results are
valid.

The simulation exercise in Script 9.4 (Sim-ME-Dep.R) draws 10 000 samples of size n = 1 000
according to the model with measurement error in the dependent variable

y∗ = β0 + β1x + u, y = y∗ + e0. (9.3)

The assumption is that we do not observe the true values of the dependent variable y∗ but our
measure y is contaminated with a measurement error e0.



176 9. More on Specification and Data Issues

Script 9.4: Sim-ME-Dep.R
# Set the random seed
set.seed(1234567)
# set true parameters: intercept & slope
b0<-1; b1<-0.5
# initialize b1hat to store 10000 results:
b1hat <- numeric(10000)
b1hat.me <- numeric(10000)

# Draw a sample of x, fixed over replications:
x <- rnorm(1000,4,1)
# repeat r times:
for(j in 1:10000) {
# Draw a sample of u
u <- rnorm(1000)
# Draw a sample of ystar:
ystar <- b0 + b1*x + u
# regress ystar on x and store slope estimate at position j
bhat <- coef( lm(ystar~x) )
b1hat[j] <- bhat["x"]
# Measurement error and mismeasured y:
e0 <- rnorm(1000)
y <- ystar+e0
# regress y on x and store slope estimate at position j
bhat.me <- coef( lm(y~x) )
b1hat.me[j] <- bhat.me["x"]

}

# Mean with and without ME
c( mean(b1hat), mean(b1hat.me) )
# Variance with and without ME
c( var(b1hat), var(b1hat.me) )

In the simulation, the parameter estimates using both the correct y∗ and the mismeasured y are
stored as the variables b1hat and b1hat.me, respectively. As expected, the simulated mean of both
variables is close to the expected value of β1 = 0.5. The variance of b1hat.me is around 0.002 which
is twice as high as the variance of b1hat. This was expected since in our simulation, u and e0 are
both independent standard normal variables, so Var(u) = 1 and Var(u + e0) = 2:

> # Mean with and without ME
> c( mean(b1hat), mean(b1hat.me) )
[1] 0.5003774 0.5001819

> # Variance with and without ME
> c( var(b1hat), var(b1hat.me) )
[1] 0.0009990556 0.0019991960

If an explanatory variable is mismeasured, the consequences are usually more dramatic. Even in
the classical errors-in-variables case where the measurement error is unrelated to the regressors, the
parameter estimates are biased and inconsistent. This model is

y = β0 + β1x∗ + u, x = x∗ + e1 (9.4)



9.2. Measurement Error 177

where the measurement error e1 is independent of both x∗ and u. Wooldridge (2019, Section 9.4)
shows that if we regress y on x instead of x∗,

plimβ̂1 = β1 ·
Var(x∗)

Var(x∗) + Var(e1)
. (9.5)

The simulation in Script 9.5 (Sim-ME-Explan.R) draws 10 000 samples of size n = 1 000 from this
model.

Script 9.5: Sim-ME-Explan.R
# Set the random seed
set.seed(1234567)
# set true parameters: intercept & slope
b0<-1; b1<-0.5
# initialize b1hat to store 10000 results:
b1hat <- numeric(10000)
b1hat.me <- numeric(10000)

# Draw a sample of x, fixed over replications:
xstar <- rnorm(1000,4,1)
# repeat r times:
for(j in 1:10000) {

# Draw a sample of u
u <- rnorm(1000)
# Draw a sample of ystar:
y <- b0 + b1*xstar + u
# regress y on xstar and store slope estimate at position j
bhat <- coef( lm(y~xstar) )
b1hat[j] <- bhat["xstar"]
# Measurement error and mismeasured y:
e1 <- rnorm(1000)
x <- xstar+e1
# regress y on x and store slope estimate at position j
bhat.me <- coef( lm(y~x) )
b1hat.me[j] <- bhat.me["x"]

}

# Mean with and without ME
c( mean(b1hat), mean(b1hat.me) )
# Variance with and without ME
c( var(b1hat), var(b1hat.me) )

Since in this simulation, Var(x∗) = Var(e1) = 1, equation 9.5 implies that plimβ̂1 = 1
2 β1 = 0.25.

This is confirmed by the simulation results. While the mean of the estimate b1hat using the correct
regressor again is around 0.5, the mean parameter estimate using the mismeasured regressor is about
0.25:

> # Mean with and without ME
> c( mean(b1hat), mean(b1hat.me) )
[1] 0.5003774 0.2490821

> # Variance with and without ME
> c( var(b1hat), var(b1hat.me) )
[1] 0.0009990556 0.0005363206



178 9. More on Specification and Data Issues

9.3. Missing Data and Nonrandom Samples

In many data sets, we fail to observe all variables for each observational unit. An important case is
survey data where the respondents refuse or fail to answer some questions. In R, missing data can
be represented by different values of the variable:

• NA (not available) indicates that we do not have the information.
• NaN (not a number) indicates that the value is not defined. It is usually the result of operations

like 0
0 or the logarithm of a negative number.

The function is.na(value) returns TRUE if value is either NA or NaN and FALSE otherwise.
Note that operations resulting in ±∞ like log(0) or 1

0 are not coded as NaN but as Inf or -Inf.
Unlike some other statistical software packages, R can do calculations with these numbers. Script
9.6 (NA-NaN-Inf.R) gives some examples.

Output of Script 9.6: NA-NaN-Inf.R

> x <- c(-1,0,1,NA,NaN,-Inf,Inf)

> logx <- log(x)

> invx <- 1/x

> ncdf <- pnorm(x)

> isna <- is.na(x)

> data.frame(x,logx,invx,ncdf,isna)
x logx invx ncdf isna

1 -1 NaN -1 0.1586553 FALSE
2 0 -Inf Inf 0.5000000 FALSE
3 1 0 1 0.8413447 FALSE
4 NA NA NA NA TRUE
5 NaN NaN NaN NaN TRUE
6 -Inf NaN 0 0.0000000 FALSE
7 Inf Inf 0 1.0000000 FALSE

Depending on the data source, real-world data sets can have different rules for indicating missing
information. Sometimes, impossible numeric values are used. For example, a survey including the
number of years of education as a variable educ might have a value like “9999” to indicate missing
information. For any software package, it is highly recommended to change these to proper missing-
value codes early in the data-handling process. Otherwise, we take the risk that some statistical
method interprets those values as “this person went to school for 9999 years” producing highly
nonsensical results. For the education example, if the variable educ is in the data frame mydata this
can be done with

mydata$educ[mydata$educ==9999] <- NA

We can also create logical variables indicating missing values using the function
is.na(variable). It will generate a new logical variable of the same length which is TRUE
whenever variable is either NA or NaN. The function can also be used on data frames. The
command is.na(mydata) will return another data frame with the same dimensions and variable
names but full of logical indicators for missing observations. It is useful to count the missings for
each variable in a data frame with



9.3. Missing Data and Nonrandom Samples 179

colSums(is.na(mydata))

The function complete.cases(mydata) generates one logical vector indicating the rows of the
data frame that don’t have any missing information.

Script 9.7 (Missings.R) demonstrates these commands for the data set LAWSCH85.dta which
contains data on law schools. Of the 156 schools, 6 do not report median LSAT scores. Looking at all
variables, the most missings are found for the age of the school – we don’t know it for 45 schools.
For only 90 of the 156 schools, we have the full set of variables, for the other 66, one or more variable
is missing.

Output of Script 9.7: Missings.R

> data(lawsch85, package=’wooldridge’)

> # extract LSAT
> lsat <- lawsch85$LSAT

> # Create logical indicator for missings
> missLSAT <- is.na(lawsch85$LSAT)

> # LSAT and indicator for Schools No. 120-129:
> rbind(lsat,missLSAT)[,120:129]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
lsat 156 159 157 167 NA 158 155 157 NA 163
missLSAT 0 0 0 0 1 0 0 0 1 0

> # Frequencies of indicator
> table(missLSAT)
missLSAT
FALSE TRUE

150 6

> # Missings for all variables in data frame (counts)
> colSums(is.na(lawsch85))

rank salary cost LSAT GPA libvol faculty age
0 8 6 6 7 1 4 45

clsize north south east west lsalary studfac top10
3 0 0 0 0 8 6 0

r11_25 r26_40 r41_60 llibvol lcost
0 0 0 1 6

> # Indicator for complete cases
> compl <- complete.cases(lawsch85)

> table(compl)
compl
FALSE TRUE

66 90

The question how to deal with missing values is not trivial and depends on many things. R offers
different strategies. The strictest approach is used by default for basic statistical functions such as
mean. If we don’t know all the numbers, we cannot calculate their average. So by default, mean and
other commands return NA if at least one value is missing.

In many cases, this is overly pedantic. A widely used strategy is to simply remove the observations
with missing values and do the calculations for the remaining ones. For commands like mean, this



180 9. More on Specification and Data Issues

is requested with the option na.rm=TRUE. Regression commands like lm do this by default. If
observations are excluded due to missing values, the summary of the results contain a line stating
(XXX observations deleted due to missingness)

Script 9.8 (Missings-Analyses.R) gives examples of these features. There are more advanced
methods for dealing with missing data implemented in R, for example package mi provides multiple
imputation algorithms. But these methods are beyond the scope of this book.

Output of Script 9.8: Missings-Analyses.R

> data(lawsch85, package=’wooldridge’)

> # Mean of a variable with missings:
> mean(lawsch85$LSAT)
[1] NA

> mean(lawsch85$LSAT,na.rm=TRUE)
[1] 158.2933

> # Regression with missings
> summary(lm(log(salary)~LSAT+cost+age, data=lawsch85))

Call:
lm(formula = log(salary) ~ LSAT + cost + age, data = lawsch85)

Residuals:
Min 1Q Median 3Q Max

-0.40989 -0.09438 0.00317 0.10436 0.45483

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.384e+00 6.781e-01 6.465 4.94e-09 ***
LSAT 3.722e-02 4.501e-03 8.269 1.06e-12 ***
cost 1.114e-05 4.321e-06 2.577 0.011563 *
age 1.503e-03 4.354e-04 3.453 0.000843 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1545 on 91 degrees of freedom
(61 observations deleted due to missingness)

Multiple R-squared: 0.6708, Adjusted R-squared: 0.6599
F-statistic: 61.81 on 3 and 91 DF, p-value: < 2.2e-16



9.4. Outlying Observations 181

9.4. Outlying Observations

Wooldridge (2019, Section 9.5) offers a very useful discussion of outlying observations. One of the
important messages from the discussion is that dealing with outliers is a tricky business. R offers a
function studres to automatically calculate all studentized residuals discussed there. For the R&D
example from Wooldridge (2019), Script 9.9 (Outliers.R) calculates them and reports the highest
and the lowest number. It also generates the histogram with overlayed density plot in Figure 9.1.
Especially the highest value of 4.55 appears to be an extremely outlying value.

R offers many more tools for analyzing outliers. Notable example include the function
influence.measures which gives a table of different measures of leverage and influence for all
observations. The package car offers other useful analyses and graphs.

Output of Script 9.9: Outliers.R

> data(rdchem, package=’wooldridge’)

> # Regression
> reg <- lm(rdintens~sales+profmarg, data=rdchem)

> # Studentized residuals for all observations:
> studres <- rstudent(reg)

> # Display extreme values:
> min(studres)
[1] -1.818039

> max(studres)
[1] 4.555033

> # Histogram (and overlayed density plot):
> hist(studres, freq=FALSE)

> lines(density(studres), lwd=2)

Figure 9.1. Outliers: Distribution of studentized residuals

Histogram of studres

studres

D
en

si
ty

−2 −1 0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5



182 9. More on Specification and Data Issues

9.5. Least Absolute Deviations (LAD) Estimation
As an alternative to OLS, the least absolute deviations (LAD) estimator is less sensitive to outliers.
Instead of minimizing the sum of squared residuals, it minimizes the sum of the absolute values of the
residuals.

Wooldridge (2019, Section 9.6) explains that the LAD estimator attempts to estimate the parameters
of the conditional median Med(y|x1, . . . , xk) instead of the conditional mean E(y|x1, . . . , xk). This
makes LAD a special case of quantile regression which studies general quantiles of which the median
(=0.5 quantile) is just a special case. In R, general quantile regression (and LAD as the default special
case) can easily be implemented with the command rq from the package quantreg. It works very
similar to lm for OLS estimation.

Script 9.10 (LAD.R) demonstrates its application using the example from Wooldridge (2019, Exam-
ple 9.8) and Script 9.9. Note that LAD inferences are only valid asymptotically, so the results in this
example with n = 32 should be taken with a grain of salt.

Output of Script 9.10: LAD.R

> data(rdchem, package=’wooldridge’)

> # OLS Regression
> ols <- lm(rdintens ~ I(sales/1000) +profmarg, data=rdchem)

> # LAD Regression
> library(quantreg)

> lad <- rq(rdintens ~ I(sales/1000) +profmarg, data=rdchem)

> # regression table
> library(stargazer)

> stargazer(ols,lad, type = "text")

=================================================
Dependent variable:

-----------------------------
rdintens

OLS quantile
regression

(1) (2)
-------------------------------------------------
I(sales/1000) 0.053 0.019

(0.044) (0.059)

profmarg 0.045 0.118**
(0.046) (0.049)

Constant 2.625*** 1.623***
(0.586) (0.509)

-------------------------------------------------
Observations 32 32
R2 0.076
Adjusted R2 0.012
Residual Std. Error 1.862 (df = 29)
F Statistic 1.195 (df = 2; 29)
=================================================
Note: *p<0.1; **p<0.05; ***p<0.01



Part II.

Regression Analysis with Time Series
Data





10. Basic Regression Analysis with Time
Series Data

Time series differ from cross-sectional data in that each observation (i.e. row in a data frame) cor-
responds to one point or period in time. Section 10.1 introduces the most basic static time series
models. In Section 10.2, we look into more technical details how to deal with time series data in
R. Other aspects of time series models such as dynamics, trends, and seasonal effects are treated in
Section 10.3.

10.1. Static Time Series Models

Static time series regression models describe the contemporaneous relation between the dependent
variable y and the regressors z1, . . . , zk. For each observation t = 1, . . . , n, a static equation has the
form

yt = β0 + β1z1t + · · ·+ βkzkt + ut. (10.1)

For the estimation of these models, the fact that we have time series does not make any practical
difference. We can still use lm to estimate the parameters and the other tools for statistical inference.
We only have to be aware that the assumptions needed for unbiased estimation and valid inference
differ somewhat. Important differences to cross-sectional data are that we have to assume strict
exogeneity (Assumption TS.3) for unbiasedness and no serial correlation (Assumption TS.5) for the
usual variance-covariance formula to be valid, see Wooldridge (2019, Section 10.3).

Wooldridge, Example 10.2: Effects of Inflation and Deficits on Interest Rates10.2

The data set INTDEF.dta contains yearly information on interest rates and related time series between
1948 and 2003. Script 10.1 (Example-10-2.R) estimates a static model explaining the interest rate i3
with the inflation rate inf and the federal budget deficit def. There is nothing different in the implemen-
tation than for cross-sectional data. Both regressors are found to have a statistically significant relation
to the interest rate.



186 10. Basic Regression Analysis with Time Series Data

Output of Script 10.1: Example-10-2.R

> data(intdef, package=’wooldridge’)

> # Linear regression of static model:
> summary( lm(i3~inf+def,data=intdef) )

Call:
lm(formula = i3 ~ inf + def, data = intdef)

Residuals:
Min 1Q Median 3Q Max

-3.9948 -1.1694 0.1959 0.9602 4.7224

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.73327 0.43197 4.012 0.00019 ***
inf 0.60587 0.08213 7.376 1.12e-09 ***
def 0.51306 0.11838 4.334 6.57e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.843 on 53 degrees of freedom
Multiple R-squared: 0.6021, Adjusted R-squared: 0.5871
F-statistic: 40.09 on 2 and 53 DF, p-value: 2.483e-11

10.2. Time Series Data Types in R

For calculations specific to times series such as lags, trends, and seasonal effects, we will have to
explicitly define the structure of our data. In R, there are several variable types specific to time series
data. The most important distinction is whether or not the data are equispaced. The observations
of equispaced time series are collected at regular points in time. Typical examples are monthly,
quarterly, or yearly data. In R, these data are efficiently stored in the standard ts variable type
which is introduced in Section 10.2.1.

Observations of irregular time series have varying distances. An important example are daily
financial data which are unavailable on weekends and bank holidays. Another example is financial
tick data which contain a record each time a trade is completed which obviously does not happen
at regular points in time. Although we will mostly work with equispaced data, we will briefly
introduce these types in Section 10.2.2.

10.2.1. Equispaced Time Series in R

A convenient way to deal with equispaced time series in R is to store them as ts objects. Suppose
we have stored our data in the object mydata. It can be one variable stored in a vector or several
variables in a matrix or data frame. A ts version of our data can be stored in object myts using

myts <- ts(mydata, ...)

The options of this command describe the time structure of the data. The most important ones are
• start: Time of first observation. Examples:

– start=1: Time units are numbered starting at 1 (the default if left out).



10.2. Time Series Data Types in R 187

Figure 10.1. Time series plot: Imports of barium chloride from China

Time

im
pt

s

1978 1980 1982 1984 1986 1988

0
50

0
10

00
15

00

– start=1948: Data start at (the beginning of) 1948.
– start=c(1978,2): Data start at year 1978, second month/quarter/...

• frequency: Number of observations per time unit (usually per year). Examples:
– frequency=1: Yearly data (the default if left out)
– frequency=4: Quarterly data
– frequency=12: Monthly data

Because the data are equispaced, the time of each of the observations is implied.
As an example, consider the example data set named BARIUM.dta. It contains monthly data on

imports of barium chloride from China between February 1978 and December 1988. Wooldridge
(2019, Example 10.5) explains the data and background. As usual, the data are imported from the
Stata data file into the data frame barium. The imports are stored as a variable barium$chnimp.
An appropriate ts vector of the imports is therefore generated with

impts <- ts(barium$chnimp, start=c(1978,2), frequency=12)

Once we have defined this time series object, we can conveniently do additional analyses. A time
series plot is simply generated with

plot(impts)

and is shown in Figure 10.1. The time axis is automatically formatted appropriately. The full R Script
10.2 (Example-Barium.R) for these calculations is shown in the appendix on page 338.

10.2.2. Irregular Time Series in R

For the remainder of this book, we will work with equispaced time series. But since irregular time
series are important for example in finance, we will briefly introduce them here. There are several
packages to deal with irregular time series. Probably the most important ones are xts and zoo.



188 10. Basic Regression Analysis with Time Series Data

Figure 10.2. Time series plot: Interest rate (3-month T-bills)

1950 1960 1970 1980 1990 2000

2
4

6
8

10
12

14

Index

zo
od

at
a$

i3

The zoo objects are very useful for both regular and irregular time series. Because the data are
not necessarily equispaced, each observation needs a time stamp provided in another vector. They
can be measured in arbitrary time units such as years. For high frequency data, standard units such
as the POSIX system are useful for pretty graphs and other outputs. Details are provided by Zeileis
and Grothendieck (2005) and Ryan and Ulrich (2008).

We have already used the data set INTDEF.dta in example 10.2. It contains yearly data on interest
rates and related time series. In Script 10.3 (Example-zoo.R), we define a zoo object containing
all data using the variable year as the time measure. Simply plotting the variable i3 gives the time
series plot shown in Figure 10.2.

Output of Script 10.3: Example-zoo.R

> data(intdef, package=’wooldridge’)

> # Variable "year" as the time measure:
> intdef$year
[1] 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

[14] 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
[27] 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
[40] 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
[53] 2000 2001 2002 2003

> # define "zoo" object containing all data, time measure=year:
> library(zoo)

> zoodata <- zoo(intdef, order.by=intdef$year)

> # Time series plot of inflation
> plot(zoodata$i3)

Daily financial data sets are important examples of irregular time series. Because of weekends and
bank holidays, these data are not equispaced and each data point contains a time stamp - usually the



10.2. Time Series Data Types in R 189

date. To demonstrate this, we will briefly look at the package quantmod which implements various
tools for financial modelling.1 It can also automatically download financial data from Yahoo Finance
and other sources. In order to do so, we must know the ticker symbol of the stock or whatever we
are interested in. It can be looked up at
http://finance.yahoo.com/lookup
For example, the symbol for the Dow Jones Industrial Average is ^DJI, Apple stocks have the
symbol AAPL and the Ford Motor Company is simply abbreviated as F. The package quantmod
now for example automatically downloads daily data on the Ford stock using

getSymbols("F", auto.assign=TRUE)

The results are automatically assigned to a xts object named after the symbol F. It includes infor-
mation on opening, closing, high, and low prices as well as the trading volume and the adjusted (for
events like stock splits and dividend payments) closing prices. We demonstrate this with the Ford
stocks in Script 10.4 (Example-quantmod.R). We download the data, print the first and last 6 rows
of data, and plot the adjusted closing prices over time.

Output of Script 10.4: Example-quantmod.R

> library(quantmod)

> # Which Yahoo Finance symbols?
> # See http://finance.yahoo.com/lookup:
> # "F" = Ford Motor Company
>
> # Download data
> getSymbols("F", auto.assign=TRUE)
[1] "F"

> # first and last 6 rows of resulting data frame:
> head(F)

F.Open F.High F.Low F.Close F.Volume F.Adjusted
2007-01-03 7.56 7.67 7.44 7.51 78652200 5.002248
2007-01-04 7.56 7.72 7.43 7.70 63454900 5.128802
2007-01-05 7.72 7.75 7.57 7.62 40562100 5.075515
2007-01-08 7.63 7.75 7.62 7.73 48938500 5.148785
2007-01-09 7.75 7.86 7.73 7.79 56732200 5.188749
2007-01-10 7.79 7.79 7.67 7.73 42397100 5.148785

> tail(F)
F.Open F.High F.Low F.Close F.Volume F.Adjusted

2020-05-08 4.96 5.25 4.95 5.24 101333800 5.24
2020-05-11 5.18 5.19 5.05 5.12 75593900 5.12
2020-05-12 5.15 5.22 4.97 4.98 70965200 4.98
2020-05-13 5.00 5.01 4.66 4.72 100192300 4.72
2020-05-14 4.64 4.92 4.52 4.89 108061100 4.89
2020-05-15 4.80 4.94 4.75 4.90 80502100 4.90

> # Time series plot of adjusted closing prices:
> plot(F$F.Adjusted, las=2)

1See http://www.quantmod.com for more details on the tools and the package.

http://finance.yahoo.com/lookup
http://www.quantmod.com


190 10. Basic Regression Analysis with Time Series Data

Figure 10.3. Time series plot: Stock prices of Ford Motor Company
Ja

n 
03

 2
00

7

Ju
l 0

2 
20

07

Ja
n 

02
 2

00
8

Ju
l 0

1 
20

08

Ja
n 

02
 2

00
9

Ju
l 0

1 
20

09

Ja
n 

04
 2

01
0

Ju
l 0

1 
20

10

Ja
n 

03
 2

01
1

Ju
l 0

1 
20

11

Ja
n 

03
 2

01
2

Ju
l 0

2 
20

12

Ja
n 

02
 2

01
3

Ju
l 0

1 
20

13

Ja
n 

02
 2

01
4

Ju
l 0

1 
20

14

Ja
n 

02
 2

01
5

Ju
l 0

1 
20

15

Ja
n 

04
 2

01
6

Ju
l 0

1 
20

16

Ja
n 

03
 2

01
7

Ju
l 0

3 
20

17

Ja
n 

02
 2

01
8

Ju
l 0

2 
20

18

Ja
n 

02
 2

01
9

Ju
l 0

1 
20

19

D
ec

 3
1 

20
19

F$F.Adjusted 2007−01−03 / 2020−05−15

 2

 4

 6

 8

10

12

 2

 4

 6

 8

10

12



10.3. Other Time Series Models 191

10.3. Other Time Series Models

10.3.1. The dynlm Package

In section 6.1, we have seen convenient ways to include arithmetic calculations like interactions,
squares and logarithms directly into the lm formula. The package dynlm introduces the command
dynlm. It is specifically designed for time-series data and accepts the data in the form of a ts or
zoo object. The command dynlm works like lm but allows for additional formula expressions. For
us, the important expressions are

• L(x): Variable x, lagged by one time unit xt−1.
• L(x,k): Variable x, lagged by k time units xt−k. The order k can also be a vector like (0:3),

see Section 10.3.2.
• d(x): First difference (xt − xt−1), see Section 11.4.
• trend(x): Linear time trends, see Section 10.3.3
• season(x): Seasonal effects, see Section 10.3.4

10.3.2. Finite Distributed Lag Models

Finite distributed lag (FDL) models allow past values of regressors to affect the dependent variable.
A FDL model of order q with an independent variable z can be written as

yt = α0 + δ0zt + δ1zt−1 + · · ·+ δqzt−q + ut (10.2)

Wooldridge (2019, Section 10.2) discusses the specification and interpretation of such models. For
the implementation, it is convenient not to have to generate the q additional variables that reflect the
lagged values zt−1, . . . , zt−q but directly specify them in the model formula using dynlm instead of
lm.

Wooldridge, Example 10.4: Effects of Personal Exemption on Fertility Rates10.4

The data set FERTIL3.dta contains yearly information on the general fertility rate gfr and the per-
sonal tax exemption pe for the years 1913 through 1984. Dummy variables for the second world war
ww2 and the availability of the birth control pill pill are also included. Script 10.5 (Example-10-4.R)
shows the distributed lag model including contemporaneous pe and two lags. All pe coefficients are
insignificantly different from zero according to the respective t tests. A usual F test implemented with
linearHypothesis reveals that they are jointly significantly different from zero at a significance level of
α = 5% with a p value of 0.012. As Wooldridge (2019) discusses, this points to a multicollinearity problem.



192 10. Basic Regression Analysis with Time Series Data

Output of Script 10.5: Example-10-4.R

> # Libraries for dynamic lm, regression table and F tests
> library(dynlm);library(lmtest);library(car)

> data(fertil3, package=’wooldridge’)

> # Define Yearly time series beginning in 1913
> tsdata <- ts(fertil3, start=1913)

> # Linear regression of model with lags:
> res <- dynlm(gfr ~ pe + L(pe) + L(pe,2) + ww2 + pill, data=tsdata)

> coeftest(res)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 95.8704975 3.2819571 29.2114 < 2.2e-16 ***
pe 0.0726718 0.1255331 0.5789 0.5647
L(pe) -0.0057796 0.1556629 -0.0371 0.9705
L(pe, 2) 0.0338268 0.1262574 0.2679 0.7896
ww2 -22.1264975 10.7319716 -2.0617 0.0433 *
pill -31.3049888 3.9815591 -7.8625 5.634e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # F test. H0: all pe coefficients are=0
> linearHypothesis(res, matchCoefs(res,"pe"))
Linear hypothesis test

Hypothesis:
pe = 0
L(pe) = 0
L(pe, 2) = 0

Model 1: restricted model
Model 2: gfr ~ pe + L(pe) + L(pe, 2) + ww2 + pill

Res.Df RSS Df Sum of Sq F Pr(>F)
1 67 15460
2 64 13033 3 2427.1 3.973 0.01165 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



10.3. Other Time Series Models 193

The long-run propensity (LRP) of FDL models measures the cumulative effect of a change in the
independent variable z on the dependent variable y over time and is simply equal to the sum of the
respective parameters

LRP = δ0 + δ1 + · · ·+ δq.

We can estimate it directly from the estimated parameter vector coef(). For testing whether it is
different from zero, we can again use the convenient linearHypothesis command.

Wooldridge, Example 10.4: (continued)10.4

Script 10.6 (Example-10-4-contd.R) calculates the estimated LRP to be around 0.1. According to an
F test, it is significantly different from zero with a p value of around 0.001.

Output of Script 10.6: Example-10-4-contd.R

> # Calculating the LRP
> b<-coef(res)

> b["pe"]+b["L(pe)"]+b["L(pe, 2)"]
pe

0.1007191

> # F test. H0: LRP=0
> linearHypothesis(res,"pe + L(pe) + L(pe, 2) = 0")
Linear hypothesis test

Hypothesis:
pe + L(pe) + L(pe, 2) = 0

Model 1: restricted model
Model 2: gfr ~ pe + L(pe) + L(pe, 2) + ww2 + pill

Res.Df RSS Df Sum of Sq F Pr(>F)
1 65 15358
2 64 13033 1 2325.8 11.421 0.001241 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



194 10. Basic Regression Analysis with Time Series Data

10.3.3. Trends

As pointed out by Wooldridge (2019, Section 10.5), deterministic linear (and exponential) time trends
can be accounted for by adding the time measure as another independent variable. In a regression
with dynlm, this can easily be done using the expression trend(tsobj) in the model formula with
the time series object tsobj.

Wooldridge, Example 10.7: Housing Investment and Prices10.7

The data set HSEINV.dta provides annual observations on housing investments invpc and housing
prices price for the years 1947 through 1988. Using a double-logarithmic specification, Script 10.7
(Example-10-7.R) estimates a regression model with and without a linear trend. Forgetting to add the
trend leads to the spurious finding that investments and prices are related.
Because of the logarithmic dependent variable, the trend in invpc (as opposed to log invpc) is expo-
nential. The estimated coefficient implies a 1% yearly increase in investments.

Output of Script 10.7: Example-10-7.R

> library(dynlm);library(stargazer)

> data(hseinv, package=’wooldridge’)

> # Define Yearly time series beginning in 1947
> tsdata <- ts(hseinv, start=1947)

> # Linear regression of model with lags:
> res1 <- dynlm(log(invpc) ~ log(price) , data=tsdata)

> res2 <- dynlm(log(invpc) ~ log(price) + trend(tsdata), data=tsdata)

> # Pretty regression table
> stargazer(res1,res2, type="text")

=================================================================
Dependent variable:

---------------------------------------------
log(invpc)

(1) (2)
-----------------------------------------------------------------
log(price) 1.241*** -0.381

(0.382) (0.679)

trend(tsdata) 0.010***
(0.004)

Constant -0.550*** -0.913***
(0.043) (0.136)

-----------------------------------------------------------------
Observations 42 42
R2 0.208 0.341
Adjusted R2 0.189 0.307
Residual Std. Error 0.155 (df = 40) 0.144 (df = 39)
F Statistic 10.530*** (df = 1; 40) 10.080*** (df = 2; 39)
=================================================================
Note: *p<0.1; **p<0.05; ***p<0.01



10.3. Other Time Series Models 195

10.3.4. Seasonality

To account for seasonal effects, we can add dummy variables for all but one (the reference) “season”.
So with monthly data, we can include eleven dummies, see Chapter 7 for a detailed discussion.
The command dynlm automatically creates and adds the appropriate dummies when using the
expression season(tsobj) in the model formula with the time series object tsobj.

Wooldridge, Example 10.11: Effects of Antidumping Filings10.11

The data in BARIUM.dta were used in an antidumping case. They are monthly data on barium chloride
imports from China between February 1978 and December 1988. Wooldridge (2019, Example 10.5)
explains the data and background. When we estimate a model with monthly dummies, they do not
have significant coefficients except the dummy for April which is marginally significant. An F test which
is not reported reveals no joint significance.

Output of Script 10.8: Example-10-11.R

> library(dynlm);library(lmtest)

> data(barium, package=’wooldridge’)

> # Define monthly time series beginning in Feb. 1978
> tsdata <- ts(barium, start=c(1978,2), frequency=12)

> res <- dynlm(log(chnimp) ~ log(chempi)+log(gas)+log(rtwex)+befile6+
> affile6+afdec6+ season(tsdata) , data=tsdata )

> coeftest(res)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.7792155 32.4286452 0.5174 0.60587
log(chempi) 3.2650621 0.4929302 6.6238 1.236e-09 ***
log(gas) -1.2781403 1.3890083 -0.9202 0.35944
log(rtwex) 0.6630453 0.4713037 1.4068 0.16222
befile6 0.1397028 0.2668075 0.5236 0.60158
affile6 0.0126324 0.2786866 0.0453 0.96393
afdec6 -0.5213004 0.3019499 -1.7264 0.08700 .
season(tsdata)Feb -0.4177110 0.3044444 -1.3720 0.17277
season(tsdata)Mar 0.0590520 0.2647307 0.2231 0.82389
season(tsdata)Apr -0.4514830 0.2683864 -1.6822 0.09529 .
season(tsdata)May 0.0333090 0.2692425 0.1237 0.90176
season(tsdata)Jun -0.2063315 0.2692515 -0.7663 0.44509
season(tsdata)Jul 0.0038366 0.2787666 0.0138 0.98904
season(tsdata)Aug -0.1570645 0.2779927 -0.5650 0.57320
season(tsdata)Sep -0.1341605 0.2676556 -0.5012 0.61718
season(tsdata)Oct 0.0516925 0.2668512 0.1937 0.84675
season(tsdata)Nov -0.2462599 0.2628271 -0.9370 0.35077
season(tsdata)Dec 0.1328376 0.2714234 0.4894 0.62550
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1





11. Further Issues In Using OLS with Time
Series Data

This chapter introduces important concepts for time series analyses. Section 11.1 discusses the gen-
eral conditions under which asymptotic analyses work with time series data. An important require-
ment will be that the time series exhibit weak dependence. In Section 11.2, we study highly persistent
time series and present some simulation excercises. One solution to this problem is first differencing
as demonstrated in Section 11.3. How this can be done in the regression framework is the topic of
Section 11.4.

11.1. Asymptotics with Time Series

As Wooldridge (2019, Section 11.2) discusses, asymptotic arguments also work with time series data
under certain conditions. Importantly, we have to assume that the data are stationary and weakly
dependent (Assumption TS.1). On the other hand, we can relax the strict exogeneity assumption TS.3
and only have to assume contemporaneous exogeneity (assumption TS.3’). Under the appropriate
set of assumptions, we can use standard OLS estimation and inference.

Wooldridge, Example 11.4: Efficient Markets Hypothesis11.4

The efficient markets hypothesis claims that we cannot predict stock returns from past returns. In a
simple AR(1) model in which returns are regressed on lagged returns, this would imply a population
slope coefficient of zero. The data set NYSE.dta contains data on weekly stock returns.
Script 11.1 (Example-11-4.R) shows the analyses. We transform the data frame into a ts object. Be-
cause we don’t give any other information, the weeks are numbered from 1 to n = 690. Regression 1
is the AR(1) model also discussed by Wooldridge (2019). Models 2 and 3 add second and third lags to
estimate higher-order AR(p) models. In all models, no lagged value has a significant coefficient and
also the F tests for joint significance do not reject the efficient markets hypothesis.



198 11. Further Issues In Using OLS with Time Series Data

Output of Script 11.1: Example-11-4.R

> library(dynlm);library(stargazer)

> data(nyse, package=’wooldridge’)

> # Define time series (numbered 1,...,n)
> tsdata <- ts(nyse)

> # Linear regression of models with lags:
> reg1 <- dynlm(return~L(return) , data=tsdata)

> reg2 <- dynlm(return~L(return)+L(return,2) , data=tsdata)

> reg3 <- dynlm(return~L(return)+L(return,2)+L(return,3), data=tsdata)

> # Pretty regression table
> stargazer(reg1, reg2, reg3, type="text",
> keep.stat=c("n","rsq","adj.rsq","f"))

========================================================================
Dependent variable:

-----------------------------------------------------------
return

(1) (2) (3)
------------------------------------------------------------------------
L(return) 0.059 0.060 0.061

(0.038) (0.038) (0.038)

L(return, 2) -0.038 -0.040
(0.038) (0.038)

L(return, 3) 0.031
(0.038)

Constant 0.180** 0.186** 0.179**
(0.081) (0.081) (0.082)

------------------------------------------------------------------------
Observations 689 688 687
R2 0.003 0.005 0.006
Adjusted R2 0.002 0.002 0.001
F Statistic 2.399 (df = 1; 687) 1.659 (df = 2; 685) 1.322 (df = 3; 683)
========================================================================
Note: *p<0.1; **p<0.05; ***p<0.01

We can do a similar analysis for daily data. The getSymbols command from the package
quantmod introduced in Section 10.2.2 allows us to directly download daily stock prices from Yahoo
Finance. Script 11.2 (Example-EffMkts.R) downloads daily stock prices of Apple (ticker symbol
AAPL) and stores them as a xts object. From the prices pt, daily returns rt are calculated using the
standard formula

rt = log(pt)− log(pt−1) ≈
pt − pt−1

pt−1
.

Note that in the script, we calculate the difference using the function diff. It calculates the difference
from trading day to trading day, ignoring the fact that some of them are separated by weekends or
holidays. Figure 11.1 plots the returns of the Apple stock. Even though we now have n = 2266
observations of daily returns, we cannot find any relation between current and past returns which
supports (this version of) the efficient markets hypothesis.



11.1. Asymptotics with Time Series 199

Output of Script 11.2: Example-EffMkts.R

> library(zoo);library(quantmod);library(dynlm);library(stargazer)

> # Download data using the quantmod package:
> getSymbols("AAPL", auto.assign = TRUE)
[1] "AAPL"

> # Calculate return as the log difference
> ret <- diff( log(AAPL$AAPL.Adjusted) )

> # Subset 2008-2016 by special xts indexing:
> ret <- ret["2008/2016"]

> # Plot returns
> plot(ret)

> # Linear regression of models with lags:
> ret <- as.zoo(ret) # dynlm cannot handle xts objects

> reg1 <- dynlm(ret~L(ret) )

> reg2 <- dynlm(ret~L(ret)+L(ret,2) )

> reg3 <- dynlm(ret~L(ret)+L(ret,2)+L(ret,3) )

> # Pretty regression table
> stargazer(reg1, reg2, reg3, type="text",
> keep.stat=c("n","rsq","adj.rsq","f"))

===========================================================================
Dependent variable:

--------------------------------------------------------------
ret

(1) (2) (3)
---------------------------------------------------------------------------
L(ret) -0.003 -0.004 -0.003

(0.021) (0.021) (0.021)

L(ret, 2) -0.029 -0.030
(0.021) (0.021)

L(ret, 3) 0.005
(0.021)

Constant 0.001 0.001 0.001*
(0.0004) (0.0004) (0.0004)

---------------------------------------------------------------------------
Observations 2,266 2,265 2,264
R2 0.00001 0.001 0.001
Adjusted R2 -0.0004 -0.00004 -0.0004
F Statistic 0.027 (df = 1; 2264) 0.955 (df = 2; 2262) 0.728 (df = 3; 2260)
===========================================================================
Note: *p<0.1; **p<0.05; ***p<0.01



200 11. Further Issues In Using OLS with Time Series Data

Figure 11.1. Time series plot: Daily stock returns 2008–2016, Apple Inc.

Jan 02 2008 Jul 01 2009 Jan 03 2011 Jul 02 2012 Jan 02 2014 Jul 01 2015 Dec 30 2016

ret 2008−01−02 / 2016−12−30

−0.15

−0.10

−0.05

 0.00

 0.05

 0.10

−0.15

−0.10

−0.05

 0.00

 0.05

 0.10

11.2. The Nature of Highly Persistent Time Series

The simplest model for highly persistent time series is a random walk. It can be written as

yt = yt−1 + et (11.1)
= y0 + e1 + e2 + · · ·+ et−1 + et (11.2)

where the shocks e1, . . . , et are i.i.d with a zero mean. It is a special case of a unit root process.
Random walk processes are strongly dependent and nonstationary, violating assumption TS1’ re-
quired for the consistency of OLS parameter estimates. As Wooldridge (2019, Section 11.3) shows,
the variance of yt (conditional on y0) increases linearly with t:

Var(yt|y0) = σ2
e · t (11.3)

This can be easily seen in a simulation exercise. Script 11.3 (Simulate-RandomWalk.R) draws
30 realizations from a random walk process with i.i.d. standard normal shocks et. After initializing
the random number generator, an empty figure with the right dimensions is produced. Then, the
realizations of the time series are drawn in a loop.1 In each of the 30 draws, we first obtain a sample
of the n = 50 shocks e1, . . . , e50. The random walk is generated as the cumulative sum of the shocks
according to Equation 11.2 with an initial value of y0 = 0. The respective time series are then added
to the plot. In the resulting Figure 11.2, the increasing variance can be seen easily.

1For a review of random number generation, see Section 1.7.4.



11.2. The Nature of Highly Persistent Time Series 201

Figure 11.2. Simulations of a random walk process

0 10 20 30 40 50

−
15

−
10

−
5

0
5

10
15

Script 11.3: Simulate-RandomWalk.R
# Initialize Random Number Generator
set.seed(348546)
# initial graph
plot(c(0,50),c(0,0),type="l",lwd=2,ylim=c(-18,18))

# loop over draws:
for(r in 1:30) {

# i.i.d. standard normal shock
e <- rnorm(50)
# Random walk as cumulative sum of shocks
y <- ts(cumsum(e))
# Add line to graph
lines(y, col=gray(.6))

}

A simple generalization is a random walk with drift:

yt = α0 + yt−1 + et (11.4)
= y0 + α0 · t + e1 + e2 + · · ·+ et−1 + et (11.5)

Script 11.4 (Simulate-RandomWalkDrift.R) simulates such a process with α0 = 2 and i.i.d. stan-
dard normal shocks et. The resulting time series are plotted in Figure 11.3. The values fluctuate
around the expected value α0 · t. But unlike weakly dependent processes, they do not tend towards
their mean, so the variance increases like for a simple random walk process.



202 11. Further Issues In Using OLS with Time Series Data

Figure 11.3. Simulations of a random walk process with drift

0 10 20 30 40 50

0
20

40
60

80
10

0

Script 11.4: Simulate-RandomWalkDrift.R
# Initialize Random Number Generator
set.seed(348546)
# initial empty graph with expected value
plot(c(0,50),c(0,100),type="l",lwd=2)

# loop over draws:
for(r in 1:30) {
# i.i.d. standard normal shock
e <- rnorm(50)
# Random walk as cumulative sum of shocks
y <- ts(cumsum(2+e))
# Add line to graph
lines(y, col=gray(.6))

}

An obvious question is whether a given sample is from a unit root process such as a random walk.
We will cover tests for unit roots in Section 18.2.



11.3. Differences of Highly Persistent Time Series 203

Figure 11.4. Simulations of a random walk process with drift: first differences

0 10 20 30 40 50

−
1

0
1

2
3

4
5

11.3. Differences of Highly Persistent Time Series

The simplest way to deal with highly persistent time series is to work with their differences rather
than their levels. The first difference of the random walk with drift is

yt = α0 + yt−1 + et (11.6)
∆yt = yt − yt−1 = α0 + et (11.7)

This is an i.i.d. process with mean α0. Script 11.5 (Simulate-RandomWalkDrift-Diff.R) repeats
the same simulation as Script 11.4 (Simulate-RandomWalkDrift.R) but calculates the differences
using the function diff. The resulting series are shown in Figure 11.4. They have a constant mean
of 2, a constant variance of σ2

e = 1, and are independent over time.

Script 11.5: Simulate-RandomWalkDrift-Diff.R
# Initialize Random Number Generator
set.seed(348546)
# initial empty graph with expected value
plot(c(0,50),c(2,2),type="l",lwd=2,ylim=c(-1,5))

# loop over draws:
for(r in 1:30) {

# i.i.d. standard normal shock
e <- rnorm(50)
# Random walk as cumulative sum of shocks
y <- ts(cumsum(2+e))
# First difference
Dy <- diff(y)
# Add line to graph
lines(Dy, col=gray(.6))

}



204 11. Further Issues In Using OLS with Time Series Data

11.4. Regression with First Differences
Adding first differences to regression model formulas estimated with dynlm is straightforward. The
dependent or independent variable var is specified as a first difference with d(var). We can also
combine d() and L() specifications. For example L( d(var) ,3) is the first difference, lagged by
three time units. This is demonstrated in Example 11.6.

Wooldridge, Example 11.6: Fertility Equation11.6

We continue Example 10-4 and specify the fertility equation in first differences. Script 11.6
(Example-11-6.R) shows the analyses. While the first difference of the tax exemptions has no
significant effect, its second lag has a significantly positive coefficient in the second model. This is
consistent with fertility reacting two years after a change of the tax code.

Output of Script 11.6: Example-11-6.R

> # Libraries for dynamic lm and "stargazer" regression table
> library(dynlm);library(stargazer)

> data(fertil3, package=’wooldridge’)

> # Define Yearly time series beginning in 1913
> tsdata <- ts(fertil3, start=1913)

> # Linear regression of model with first differences:
> res1 <- dynlm( d(gfr) ~ d(pe), data=tsdata)

> # Linear regression of model with lagged differences:
> res2 <- dynlm( d(gfr) ~ d(pe) + L(d(pe)) + L(d(pe),2), data=tsdata)

> # Pretty regression table
> stargazer(res1,res2,type="text")

============================================================
Dependent variable:

----------------------------------------
d(gfr)

(1) (2)
------------------------------------------------------------
d(pe) -0.043 -0.036

(0.028) (0.027)

L(d(pe)) -0.014
(0.028)

L(d(pe), 2) 0.110***
(0.027)

Constant -0.785 -0.964**
(0.502) (0.468)

------------------------------------------------------------
Observations 71 69
R2 0.032 0.232
Adjusted R2 0.018 0.197
Residual Std. Error 4.221 (df = 69) 3.859 (df = 65)
F Statistic 2.263 (df = 1; 69) 6.563*** (df = 3; 65)
============================================================
Note: *p<0.1; **p<0.05; ***p<0.01



12. Serial Correlation and
Heteroscedasticity in Time Series
Regressions

In Chapter 8, we discussed the consequences of heteroscedasticity in cross-sectional regressions. In
the time series setting, similar consequences and strategies apply to both heteroscedasticity (with
some specific features) and serial correlation of the error term. Unbiasedness and consistency of the
OLS estimators are unaffected. But the OLS estimators are inefficient and the usual standard errors
and inferences are invalid.

We first discuss how to test for serial correlation in Section 12.1. Section 12.2 introduces efficient
estimation using feasible GLS estimators. As an alternative, we can still use OLS and calculate stan-
dard errors that are valid under both heteroscedasticity and autocorrelation as discussed in Section
12.3. Finally, Section 12.4 covers heteroscedasticity and autoregressive conditional heteroscedasticity
(ARCH) models.

12.1. Testing for Serial Correlation of the Error Term

Suppose we are worried that the error terms u1, u2, . . . in a regression model of the form

yt = β0 + β1xt1 + β2xt2 + · · ·+ βkxtk + ut (12.1)

are serially correlated. A straightforward and intuitive testing approach is described by Wooldridge
(2019, Section 12.3). It is based on the fitted residuals ût = yt − β̂0 − β̂1xt1 − · · · − β̂kxtk which can
be obtained in R with the function resid, see Section 2.2.

To test for AR(1) serial correlation under strict exogeneity, we regress ût on their lagged values
ût−1. If the regressors are not necessarily strictly exogenous, we can adjust the test by adding the
original regressors xt1, . . . , xtk to this regression. Then we perform the usual t test on the coefficient
of ût−1.

For testing for higher order serial correlation, we add higher order lags ût−2, ût−3, . . . as explana-
tory variables and test the joint hypothesis that they are all equal to zero using either an F test or a
Lagrange multiplier (LM) test. Especially the latter version is often called Breusch-Godfrey test.



206 12. Serial Correlation and Heteroscedasticity in Time Series Regressions

Wooldridge, Example 12.2: Testing for AR(1) Serial Correlation12.2

We use this example to demonstrate the “pedestrian” way to test for autocorrelation which is actually
straightforward and instructive. We estimate two versions of the Phillips curve: a static model

inft = β0 + β1unemt + ut

and an expectation-augmented Phillips curve

∆inft = β0 + β1unemt + ut.

Script 12.1 (Example-12-2.R) shows the analyses. After the estimation, the residuals are calculated
with resid and regressed on their lagged values. We report standard errors and t statistics using the
coeftest command. While there is strong evidence for autocorrelation in the static equation with a t
statistic of 4.93, the null hypothesis of no autocorrelation cannot be rejected in the second model with
a t statistic of −0.29.

Output of Script 12.1: Example-12-2.R

> library(dynlm);library(lmtest)

> data(phillips, package=’wooldridge’)

> # Define Yearly time series beginning in 1948
> tsdata <- ts(phillips, start=1948)

> # Estimation of static Phillips curve:
> reg.s <- dynlm( inf ~ unem, data=tsdata, end=1996)

> # residuals and AR(1) test:
> residual.s <- resid(reg.s)

> coeftest( dynlm(residual.s ~ L(residual.s)) )

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.11340 0.35940 -0.3155 0.7538
L(residual.s) 0.57297 0.11613 4.9337 1.098e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # Same with expectations-augmented Phillips curve:
> reg.ea <- dynlm( d(inf) ~ unem, data=tsdata, end=1996)

> residual.ea <- resid(reg.ea)

> coeftest( dynlm(residual.ea ~ L(residual.ea)) )

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.194166 0.300384 0.6464 0.5213
L(residual.ea) -0.035593 0.123891 -0.2873 0.7752



12.1. Testing for Serial Correlation of the Error Term 207

This class of tests can also be performed automatically using the command bgtest from the
package lmtest. Given the regression results are stored in a variable res, the LM version of a test
of AR(1) serial correlation can simply be tested using

bgtest(res)

Using different options, the test can be fine tuned:
• order=q: Test for serial correlation of order q instead of order 1.
• type="F": Use an F test instead of an LM test.

Wooldridge, Example 12.4: Testing for AR(3) Serial Correlation12.4

We already used the monthly data set BARIUM.dta and estimated a model for barium chloride im-
ports in Example 10.11. Script 12.2 (Example-12-4.R) estimates the model and tests for AR(3) serial
correlation using the manual regression approach and the command bgtest. The manual approach
gives exactly the results reported by Wooldridge (2019) while the built-in command differs very slightly
because of details of the implementation, see the documentation.

Output of Script 12.2: Example-12-4.R

> library(dynlm);library(car);library(lmtest)

> data(barium, package=’wooldridge’)

> tsdata <- ts(barium, start=c(1978,2), frequency=12)

> reg <- dynlm(log(chnimp)~log(chempi)+log(gas)+log(rtwex)+
> befile6+affile6+afdec6, data=tsdata )

> # Pedestrian test:
> residual <- resid(reg)

> resreg <- dynlm(residual ~ L(residual)+L(residual,2)+L(residual,3)+
> log(chempi)+log(gas)+log(rtwex)+befile6+
> affile6+afdec6, data=tsdata )

> linearHypothesis(resreg,
> c("L(residual)","L(residual, 2)","L(residual, 3)"))
Linear hypothesis test

Hypothesis:
L(residual) = 0
L(residual, 2) = 0
L(residual, 3) = 0

Model 1: restricted model
Model 2: residual ~ L(residual) + L(residual, 2) + L(residual, 3) + log(chempi) +

log(gas) + log(rtwex) + befile6 + affile6 + afdec6

Res.Df RSS Df Sum of Sq F Pr(>F)
1 121 43.394
2 118 38.394 3 5.0005 5.1229 0.00229 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



208 12. Serial Correlation and Heteroscedasticity in Time Series Regressions

> # Automatic test:
> bgtest(reg, order=3, type="F")

Breusch-Godfrey test for serial correlation of order up to 3

data: reg
LM test = 5.1247, df1 = 3, df2 = 121, p-value = 0.002264

Another popular test is the Durbin-Watson test for AR(1) serial correlation. While the test statistic
is pretty straightforward to compute, its distribution is non-standard and depends on the data.
Package lmtest offers the command dwtest. It is convenient because it reports p values which can
be interpreted in the standard way (given the necessary CLM assumptions hold).

Script 12.3 (Example-DWtest.R) repeats Example 12.2 but conducts DW tests instead of the t
tests. The conclusions are the same: For the static model, no serial correlation is clearly rejected with
a test statistic of DW = 0.8027 and p < 10−6. For the expectation augmented Phillips curve, the null
hypothesis is not rejected at usual significance levels (DW = 1.7696, p = 0.1783).

Output of Script 12.3: Example-DWtest.R

> library(dynlm);library(lmtest)

> data(phillips, package=’wooldridge’)

> tsdata <- ts(phillips, start=1948)

> # Estimation of both Phillips curve models:
> reg.s <- dynlm( inf ~ unem, data=tsdata, end=1996)

> reg.ea <- dynlm( d(inf) ~ unem, data=tsdata, end=1996)

> # DW tests
> dwtest(reg.s)

Durbin-Watson test

data: reg.s
DW = 0.8027, p-value = 7.552e-07
alternative hypothesis: true autocorrelation is greater than 0

> dwtest(reg.ea)

Durbin-Watson test

data: reg.ea
DW = 1.7696, p-value = 0.1783
alternative hypothesis: true autocorrelation is greater than 0



12.2. FGLS Estimation 209

12.2. FGLS Estimation
There are several ways to implement the FGLS methods for serially correlated error terms in R. A
simple way is provided by the package orcutt with its command cochrane.orcutt. It expects a
fitted OLS model and reports the Cochrane-Orcutt estimator as demonstrated in Example 12.4. As
an alternative approach, the arima command offers maximum likelihood estimation of a rich class
of models including regression models with general ARMA(p, q) errors.

Wooldridge, Example 12.5: Cochrane-Orcutt Estimation12.5

We once again use the monthly data set BARIUM.dta and the same model as before. Script 12.4
(Example-12-5.R) estimates the model with OLS and then calls cochrane.orcutt. As expected, the
results are very close to the Prais-Winsten estimates reported by Wooldridge (2019).

Output of Script 12.4: Example-12-5.R

> library(dynlm);library(car);library(orcutt)

> data(barium, package=’wooldridge’)

> tsdata <- ts(barium, start=c(1978,2), frequency=12)

> # OLS estimation
> olsres <- dynlm(log(chnimp)~log(chempi)+log(gas)+log(rtwex)+
> befile6+affile6+afdec6, data=tsdata)

> # Cochrane-Orcutt estimation
> cochrane.orcutt(olsres)
Cochrane-orcutt estimation for first order autocorrelation

Call:
dynlm(formula = log(chnimp) ~ log(chempi) + log(gas) + log(rtwex) +

befile6 + affile6 + afdec6, data = tsdata)

number of interaction: 8
rho 0.293362

Durbin-Watson statistic
(original): 1.45841 , p-value: 1.688e-04
(transformed): 2.06330 , p-value: 4.91e-01

coefficients:
(Intercept) log(chempi) log(gas) log(rtwex) befile6
-37.322241 2.947434 1.054858 1.136918 -0.016372

affile6 afdec6
-0.033082 -0.577158



210 12. Serial Correlation and Heteroscedasticity in Time Series Regressions

12.3. Serial Correlation-Robust Inference with OLS
Unbiasedness and consistency of OLS are not affected by heteroscedasticity or serial correlation,
but the standard errors are. Similar to the heteroscedasticity-robust standard errors discussed in
Section 8.1, we can use a formula for the variance-covariance matrix, often referred to as Newey-
West standard errors. The package sandwich provides the formula as the command vcovHAC.We
again use coeftest command from the lmtest package to generate a regression table with robust
standard errors, t statistics and their p values.

Wooldridge, Example 12.1: The Puerto Rican Minimum Wage12.1

Script 12.5 (Example-12-1.R) estimates a model for the employment rate depending on the minimum
wage as well as the GNP in Puerto Rico and the US. After the model has been fitted by OLS, coeftest
without additional arguments provides the regression table using the usual variance-covariance for-
mula. With the option vcovHAC provided by sandwich, we get the results for the HAC variance-
covariance formula. Both results imply a significantly negative relation between the minimum wage
and employment.

Output of Script 12.5: Example-12-1.R

> library(dynlm);library(lmtest);library(sandwich)

> data(prminwge, package=’wooldridge’)

> tsdata <- ts(prminwge, start=1950)

> # OLS regression
> reg<-dynlm(log(prepop)~log(mincov)+log(prgnp)+log(usgnp)+trend(tsdata),
> data=tsdata )

> # results with usual SE
> coeftest(reg)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.6634416 1.2578286 -5.2976 7.667e-06 ***
log(mincov) -0.2122612 0.0401523 -5.2864 7.924e-06 ***
log(prgnp) 0.2852380 0.0804921 3.5437 0.001203 **
log(usgnp) 0.4860483 0.2219825 2.1896 0.035731 *
trend(tsdata) -0.0266633 0.0046267 -5.7629 1.940e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # results with HAC SE
> coeftest(reg, vcovHAC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.6634416 1.6856885 -3.9529 0.0003845 ***
log(mincov) -0.2122612 0.0460684 -4.6075 5.835e-05 ***
log(prgnp) 0.2852380 0.1034901 2.7562 0.0094497 **
log(usgnp) 0.4860483 0.3108940 1.5634 0.1275013
trend(tsdata) -0.0266633 0.0054301 -4.9103 2.402e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



12.4. Autoregressive Conditional Heteroscedasticity 211

12.4. Autoregressive Conditional Heteroscedasticity

In time series, especially in financial data, a specific form of heteroscedasticity is often present.
Autoregressive conditional heteroscedasticity (ARCH) and related models try to capture these effects.

Consider a basic linear time series equation

yt = β0 + β1xt1 + β2xt2 + · · ·+ βkxtk + ut. (12.2)

The error term u follows a ARCH process if

E(u2
t |ut−1, ut−2, ...) = α0 + α1u2

t−1. (12.3)

As the equation suggests, we can estimate α0 and α1 by an OLS regression of the residuals û2
t on

û2
t−1.

Wooldridge, Example 12.9: ARCH in Stock Returns12.9

Script 12.6 (Example-12-9.R) estimates a simple AR(1) model for weekly N•YSE stock returns, already
studied in Example 11.4. After the squared residuals are obtained, they are regressed on their lagged
values. The coefficients from this regression are estimates for α0 and α1.

Output of Script 12.6: Example-12-9.R

> library(dynlm);library(lmtest)

> data(nyse, package=’wooldridge’)

> tsdata <- ts(nyse)

> # Linear regression of model:
> reg <- dynlm(return ~ L(return), data=tsdata)

> # squared residual
> residual.sq <- resid(reg)^2

> # Model for squared residual:
> ARCHreg <- dynlm(residual.sq ~ L(residual.sq))

> coeftest(ARCHreg)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.947433 0.440234 6.6951 4.485e-11 ***
L(residual.sq) 0.337062 0.035947 9.3767 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



212 12. Serial Correlation and Heteroscedasticity in Time Series Regressions

As a second example, let us reconsider the daily stock returns from Script 11.2
(Example-EffMkts.R). We again download the daily Apple stock prices from Yahoo Finance and
calculate their returns. Figure 11.1 on page 200 plots them. They show a very typical pattern for
an ARCH-type of model: there are periods with high (such as fall 2008) and other periods with
low volatility (fall 2010). In Script 12.7 (Example-ARCH.R), we estimate an AR(1) process for the
squared residuals. The t statistic is larger than 8, so there is very strong evidence for autoregressive
conditional heteroscedasticity.

Output of Script 12.7: Example-ARCH.R

> library(zoo);library(quantmod);library(dynlm);library(stargazer)

> # Download data using the quantmod package:
> getSymbols("AAPL", auto.assign = TRUE)
[1] "AAPL"

> # Calculate return as the log difference
> ret <- diff( log(AAPL$AAPL.Adjusted) )

> # Subset 2008-2016 by special xts indexing:
> ret <- ret["2008/2016"]

> # AR(1) model for returns
> ret <- as.zoo(ret)

> reg <- dynlm( ret ~ L(ret) )

> # squared residual
> residual.sq <- resid(reg)^2

> # Model for squared residual:
> ARCHreg <- dynlm(residual.sq ~ L(residual.sq))

> summary(ARCHreg)

Time series regression with "zoo" data:
Start = 2008-01-04, End = 2016-12-30

Call:
dynlm(formula = residual.sq ~ L(residual.sq))

Residuals:
Min 1Q Median 3Q Max

-0.002745 -0.000346 -0.000280 -0.000045 0.038809

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.453e-04 2.841e-05 12.155 <2e-16 ***
L(residual.sq) 1.722e-01 2.071e-02 8.318 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.001288 on 2263 degrees of freedom
Multiple R-squared: 0.02967, Adjusted R-squared: 0.02924
F-statistic: 69.19 on 1 and 2263 DF, p-value: < 2.2e-16

There are many generalizations of ARCH models. The packages tseries and rugarch provide
automated maximum likelihood estimation for many models of this class.



Part III.

Advanced Topics





13. Pooling Cross-Sections Across Time:
Simple Panel Data Methods

Pooled cross sections consist of random samples from the same population at different points in
time. Section 13.1 introduces this type of data set and how to use it for estimating changes over
time. Section 13.2 covers difference-in-differences estimators, an important application of pooled
cross-sections for identifying causal effects.

Panel data resemble pooled cross sectional data in that we have observations at different points in
time. The key difference is that we observe the same cross-sectional units, for example individuals
or firms. Panel data methods require the data to be organized in a systematic way, as discussed
in Section 13.3. This allows specific calculations used for panel data analyses that are presented in
Section 13.4. Section 13.5 introduces the first panel data method, first differenced estimation.

13.1. Pooled Cross-Sections

If we have random samples at different points in time, this does not only increase the overall sample
size and thereby the statistical precision of our analyses. It also allows to study changes over time
and shed additional light on relationships between variables.

Wooldridge, Example 13.2: Changes to the Return to Education and the
Gender Wage Gap13.2

The data set CPS78_85.dta includes two pooled cross-sections for the years 1978 and 1985. The dummy
variable y85 is equal to one for observations in 1985 and to zero for 1978. We estimate a model for the
log wage lwage of the form

lwage = β0 + δ0y85+ β1educ+ δ1(y85 · educ) + β2exper+ β3
exper2

100

+ β4union+ β5female+ δ5(y85 · female) + u

Note that we divide exper2 by 100 and thereby multiply β3 by 100 compared to the results reported in
Wooldridge (2019). The parameter β1 measures the return to education in 1978 and δ1 is the difference
of the return to education in 1985 relative to 1978. Likewise, β5 is the gender wage gap in 1978 and δ5 is
the change of the wage gap.
Script 13.1 (Example-13-2.R) estimates the model. The return to education is estimated to have in-
creased by δ̂1 = 0.018 and the gender wage gap decreased in absolute value from β̂5 = −0.317 to
β̂5 + δ̂5 = −0.232, even though this change is only marginally significant. The interpretation and imple-
mentation of interactions were covered in more detail in Section 6.1.6.



216 13. Pooling Cross-Sections Across Time: Simple Panel Data Methods

Output of Script 13.1: Example-13-2.R

> data(cps78_85, package=’wooldridge’)

> # Detailed OLS results including interaction terms
> summary( lm(lwage ~ y85*(educ+female) +exper+ I((exper^2)/100) + union,
> data=cps78_85) )

Call:
lm(formula = lwage ~ y85 * (educ + female) + exper + I((exper^2)/100) +

union, data = cps78_85)

Residuals:
Min 1Q Median 3Q Max

-2.56098 -0.25828 0.00864 0.26571 2.11669

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.458933 0.093449 4.911 1.05e-06 ***
y85 0.117806 0.123782 0.952 0.3415
educ 0.074721 0.006676 11.192 < 2e-16 ***
female -0.316709 0.036621 -8.648 < 2e-16 ***
exper 0.029584 0.003567 8.293 3.27e-16 ***
I((exper^2)/100) -0.039943 0.007754 -5.151 3.08e-07 ***
union 0.202132 0.030294 6.672 4.03e-11 ***
y85:educ 0.018461 0.009354 1.974 0.0487 *
y85:female 0.085052 0.051309 1.658 0.0977 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4127 on 1075 degrees of freedom
Multiple R-squared: 0.4262, Adjusted R-squared: 0.4219
F-statistic: 99.8 on 8 and 1075 DF, p-value: < 2.2e-16

13.2. Difference-in-Differences

Wooldridge (2019, Section 13.2) discusses an important type of applications for pooled cross-sections.
Difference-in-differences (DiD) estimators estimate the effect of a policy intervention (in the broadest
sense) by comparing the change over time of an outcome of interest between an affected and an
unaffected group of observations.

In a regression framework, we regress the outcome of interest on a dummy variable for the affected
(“treatment”) group, a dummy indicating observations after the treatment and an interaction term
between both. The coefficient of this interaction term can then be a good estimator for the effect of
interest, controlling for initial differences between the groups and contemporaneous changes over
time.



13.2. Difference-in-Differences 217

Wooldridge, Example 13.3: Effect of a Garbage Incinerator’s Location on
Housing Prices13.3

We are interested in whether and how much the construction of a new garbage incinerator affected
the value of nearby houses. Script 13.2 (Example-13-3-1.R) uses the data set KIELMC.dta. We first
estimate separate models for 1978 (before there were any rumors about the new incinerator) and 1981
(when the construction began). In 1981, the houses close to the construction site were cheaper by
an average of $30, 688.27. But this was not only due to the new incinerator since even in 1978, nearby
houses were cheaper by an average of $18, 824.37. The difference of these differences δ̂ = $30, 688.27−
$18, 824.37 = $11, 863.90 is the DiD estimator and is arguably a better indicator of the actual effect.
The DiD estimator can be obtained more conveniently using a joint regression model with the interaction
term as described above. The estimator δ̂ = $11, 863.90 can be directly seen as the coefficient of the
interaction term. Conveniently, standard regression tables include t tests of the hypothesis that the
actual effect is equal to zero. For a one-sided test, the p value is 1

2 · 0.112 = 0.056, so there is some
statistical evidence of a negative impact.
The DiD estimator can be improved. A logarithmic specification is more plausible since it implies a
constant percentage effect on the house values. We can also add additional regressors to control for
incidental changes in the composition of the houses traded. Script 13.3 (Example-13-3-2.R) imple-
ments both improvements. The model including features of the houses implies an estimated decrease
in the house values of about 13.2%. This effect is also significantly different from zero.

Output of Script 13.2: Example-13-3-1.R

> data(kielmc, package=’wooldridge’)

> # Separate regressions for 1978 and 1981: report coeeficients only
> coef( lm(rprice~nearinc, data=kielmc, subset=(year==1978)) )
(Intercept) nearinc

82517.23 -18824.37

> coef( lm(rprice~nearinc, data=kielmc, subset=(year==1981)) )
(Intercept) nearinc

101307.51 -30688.27

> # Joint regression including an interaction term
> library(lmtest)

> coeftest( lm(rprice~nearinc*y81, data=kielmc) )

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 82517.2 2726.9 30.2603 < 2.2e-16 ***
nearinc -18824.4 4875.3 -3.8612 0.0001368 ***
y81 18790.3 4050.1 4.6395 5.117e-06 ***
nearinc:y81 -11863.9 7456.6 -1.5911 0.1125948
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Output of Script 13.3: Example-13-3-2.R

> DiD <- lm(log(rprice)~nearinc*y81 , data=kielmc)



218 13. Pooling Cross-Sections Across Time: Simple Panel Data Methods

> DiDcontr <- lm(log(rprice)~nearinc*y81+age+I(age^2)+log(intst)+
> log(land)+log(area)+rooms+baths, data=kielmc)

> library(stargazer)

> stargazer(DiD,DiDcontr,type="text")

====================================================================
Dependent variable:

------------------------------------------------
log(rprice)

(1) (2)
--------------------------------------------------------------------
nearinc -0.340*** 0.032

(0.055) (0.047)

y81 0.193*** 0.162***
(0.045) (0.028)

age -0.008***
(0.001)

I(age2) 0.00004***
(0.00001)

log(intst) -0.061*
(0.032)

log(land) 0.100***
(0.024)

log(area) 0.351***
(0.051)

rooms 0.047***
(0.017)

baths 0.094***
(0.028)

nearinc:y81 -0.063 -0.132**
(0.083) (0.052)

Constant 11.285*** 7.652***
(0.031) (0.416)

--------------------------------------------------------------------
Observations 321 321
R2 0.246 0.733
Adjusted R2 0.239 0.724
Residual Std. Error 0.338 (df = 317) 0.204 (df = 310)
F Statistic 34.470*** (df = 3; 317) 84.915*** (df = 10; 310)
====================================================================
Note: *p<0.1; **p<0.05; ***p<0.01



13.3. Organizing Panel Data 219

13.3. Organizing Panel Data

A panel data set includes several observations at different points in time t for the same (or at least
an overlapping) set of cross-sectional units i. A simple “pooled” regression model could look like

yit = β0 + β1xit1 + β2xit2 + · · ·+ βkxitk + vit; t = 1, . . . , T; i = 1, . . . , n, (13.1)

where the double subscript now indicates values for individual (or other cross-sectional unit) i at time
t. We could estimate this model by OLS, essentially ignoring the panel structure. But at least the
assumption that the error terms are unrelated is very hard to justify since they contain unobserved
individual traits that are likely to be constant or at least correlated over time. Therefore, we need
specific methods for panel data.

For the calculations used by panel data methods, we have to make sure that the data set is sys-
tematically organized and the estimation routines understand its structure. Usually, a panel data set
comes in a “long” form where each row of data corresponds to one combination of i and t. We have
to define which observations belong together by introducing an index variable for the cross-sectional
units i and preferably also the time index t.

The package plm (for panel linear models) is a comprehensive collection of commands deal-
ing with panel data. Similar to specific data types for time series, it offers a data type named
pdata.frame. It essentially corresponds to a standard data.frame but has additional attributes
that describe the individual and time dimensions. Suppose we have our data in a standard data
frame named mydf. It includes a variable ivar indicating the cross-sectional units and a variable
tvar indicating the time. Then we can create a panel data frame with the command

mypdf <- pdata.frame( mydf, index=c("ivar","tvar") )

If we have a balanced panel (i.e. the same number of observations T for each “individual” i =
1, . . . , n) and the observations are first sorted by i and then by t, we can alternatively call

mypdf <- pdata.frame( mydf, index=n )

In this case, the new variables id and time are generated as the index variables.
Once we have defined our data set, we can check the dimensions with pdim(mypdf). It will

report whether the panel is balanced, the number of cross-sectional units n, the number of time units
T, and the total number of observations N (which is n · T in balanced panels).

Let’s apply this to the data set CRIME2.dta discussed by Wooldridge (2019, Section 13.3). It is a
balanced panel of 46 cities, properly sorted. Script 13.4 (PDataFrame.R) imports the data set. We
define our new panel data frame crime2.p and check its dimensions. Apparently, R understood us
correctly and reports a balanced panel with two observations on 46 cities each. We also display the
first six rows of data for the new id and time index variables and other selected variables. Now
we’re ready to work with this data set.



220 13. Pooling Cross-Sections Across Time: Simple Panel Data Methods

Output of Script 13.4: PDataFrame.R

> library(plm)

> data(crime2, package=’wooldridge’)

> # Define panel data frame
> crime2.p <- pdata.frame(crime2, index=46 )

> # Panel dimensions:
> pdim(crime2.p)
Balanced Panel: n = 46, T = 2, N = 92

> # Observation 1-6: new "id" and "time" and some other variables:
> crime2.p[1:6,c("id","time","year","pop","crimes","crmrte","unem")]

id time year pop crimes crmrte unem
1-1 1 1 82 229528 17136 74.65756 8.2
1-2 1 2 87 246815 17306 70.11729 3.7
2-1 2 1 82 814054 75654 92.93487 8.1
2-2 2 2 87 933177 83960 89.97221 5.4
3-1 3 1 82 374974 31352 83.61113 9.0
3-2 3 2 87 406297 31364 77.19476 5.9

13.4. Panel-specific computations

Once we have defined our panel data set, we can do useful computations specific to panel data. They
will be used by the estimators discussed below. While we will see that for much of applied panel
data regressions, the canned routines will take care of these calculations, it is still instructive and
gives us more flexibility to be able to implement them ourselves.

Consider a panel data set with the cross-sectional units (individuals,...) i = 1, ..., n. There are Ti
observations for individual i. The total number of observations is N = ∑n

i=1 Ti. In the special case of
a balanced panel, all individuals have the same Ti = T and N = n · T.

Table 13.1 lists the most important special functions. We can calculate lags and first differences
using lag and diff, respectively. Unlike in pure time series data, the lags and differences are
calculated for the individuals separately, so the first observations for each i = 1, . . . , n is NA. Higher-
order lags can be specified as a second argument.

The individual averages x̄i =
1
Ti

∑Ti
t=1 xit are calculated using the function between which returns

one value for each individual in a vector of length n. Often, we need this value for each of the
N observations. The command Between returns this vector of length N where each x̄i is repeated
Ti times. The within transformation conveniently calculated with Within subtracts the individual
mean x̄i from observation xit. These “demeaned” variables play an important role in Chapter 14.

Table 13.1. Panel-specific computations

l=lag(x) Lag: lit = xit−1
d=diff(x) Difference ∆xit dit = xit − xit−1

b=between(x) Between transformation x̄i (length n): bi =
1
Ti

∑Ti
t=1 xit

B=Between(x) Between transformation x̄i (length N): Bit = bi
w=Within(x) Within transformation (demeaning) ẍit: wit = xit − Bit



13.4. Panel-specific computations 221

Script 13.5 (Example-PLM-Calcs.R) demonstrates these functions. The data set CRIME4.dta
has data on 90 counties for seven years. The data set includes the index variables county and year
which are used in the definition of our pdata.frame. We calculate lags, differences, between and
within transformations of the crime rate (crmrte). The results are stored back into the panel data
frame. The first rows of data are then presented for illustration.

The lagged variable vcr.l is just equal to crmrte but shifted down one row. The difference between
these two variables is cr.d. The average crmrte within the first seven rows (i.e. for county 1) is
given as the first seven values of cr.B and cr.W is the difference between crmrte and cr.B.

Output of Script 13.5: Example-PLM-Calcs.R

> library(plm)

> data(crime4, package=’wooldridge’)

> # Generate pdata.frame:
> crime4.p <- pdata.frame(crime4, index=c("county","year") )

> # Calculations within the pdata.frame:
> crime4.p$cr.l <- lag(crime4.p$crmrte)

> crime4.p$cr.d <- diff(crime4.p$crmrte)

> crime4.p$cr.B <- Between(crime4.p$crmrte)

> crime4.p$cr.W <- Within(crime4.p$crmrte)

> # Display selected variables for observations 1-16:
> crime4.p[1:16,c("county","year","crmrte","cr.l","cr.d","cr.B","cr.W")]

county year crmrte cr.l cr.d cr.B cr.W
1-81 1 81 0.03988490 NA NA 0.03574136 0.0041435414
1-82 1 82 0.03834490 0.03988490 -0.0015399978 0.03574136 0.0026035437
1-83 1 83 0.03030480 0.03834490 -0.0080401003 0.03574136 -0.0054365567
1-84 1 84 0.03472590 0.03030480 0.0044211000 0.03574136 -0.0010154567
1-85 1 85 0.03657300 0.03472590 0.0018470995 0.03574136 0.0008316429
1-86 1 86 0.03475240 0.03657300 -0.0018206015 0.03574136 -0.0009889587
1-87 1 87 0.03560360 0.03475240 0.0008512028 0.03574136 -0.0001377559
3-81 3 81 0.01639210 NA NA 0.01493636 0.0014557433
3-82 3 82 0.01906510 0.01639210 0.0026730001 0.01493636 0.0041287434
3-83 3 83 0.01514920 0.01906510 -0.0039159004 0.01493636 0.0002128430
3-84 3 84 0.01366210 0.01514920 -0.0014871005 0.01493636 -0.0012742575
3-85 3 85 0.01203460 0.01366210 -0.0016275002 0.01493636 -0.0029017577
3-86 3 86 0.01299820 0.01203460 0.0009636004 0.01493636 -0.0019381573
3-87 3 87 0.01525320 0.01299820 0.0022550002 0.01493636 0.0003168429
5-81 5 81 0.00933716 NA NA 0.01256721 -0.0032300486
5-82 5 82 0.01232290 0.00933716 0.0029857401 0.01256721 -0.0002443085



222 13. Pooling Cross-Sections Across Time: Simple Panel Data Methods

13.5. First Differenced Estimator

Wooldridge (2019, Sections 13.3 – 13.5) discusses basic unobserved effects models and their estima-
tion by first-differencing (FD). Consider the model

yit = β0 + β1xit1 + · · ·+ βkxitk + ai + uit; t = 1, . . . , T; i = 1, . . . , n, (13.2)

which differs from Equation 13.1 in that it explicitly involves an unobserved effect ai that is constant
over time (since it has no t subscript). If it is correlated with one or more of the regressors xit1, . . . , xitk,
we cannot simply ignore ai, leave it in the composite error term vit = ai + uit and estimate the
equation by OLS. The error term vit would be related to the regressors, violating assumption MLR.4
(and MLR.4’) and creating biases and inconsistencies. Note that this problem is not unique to panel
data, but possible solutions are.

The first differenced (FD) estimator is based on the first difference of the whole equation:

∆yit ≡ yit − yit−1

= β1∆xit1 + · · ·+ βk∆xitk + ∆uit; t = 2, . . . , T; i = 1, . . . , n. (13.3)

Note that we cannot evaluate this equation for the first observation t = 1 for any i since the lagged
values are unknown for them. The trick is that ai drops out of the equation by differencing since it
does not change over time. No matter how badly it is correlated with the regressors, it cannot hurt
the estimation anymore. This estimating equation is then analyzed by OLS. We simply regress the
differenced dependent variable ∆yit on the differenced independent variables ∆xit1, . . . , ∆xitk.

Script 13.6 (Example-FD.R) opens the data set CRIME2.dta already used above. Within a
pdata.frame, we use the function diff to calculate first differences of the dependent variable
crime rate (crmrte) and the independent variable unemployment rate (unem) within our data set.

A list of the first six observations reveals that the differences are unavailable (NA) for the first year
of each city. The other differences are also calculated as expected. For example the change of the
crime rate for city 1 is 70.11729− 74.65756 = −4.540268 and the change of the unemployment rate
for city 2 is 5.4− 8.1 = −2.7.

The FD estimator can now be calculated by simply applying OLS to these differenced values.
The observations for the first year with missing information are automatically dropped from the
estimation sample. The results show a significantly positive relation between unemployment and
crime.

Output of Script 13.6: Example-FD.R

> library(plm); library(lmtest)

> data(crime2, package=’wooldridge’)

> crime2.p <- pdata.frame(crime2, index=46 )

> # manually calculate first differences:
> crime2.p$dyear <- diff(crime2.p$year)

> crime2.p$dcrmrte <- diff(crime2.p$crmrte)



13.5. First Differenced Estimator 223

> crime2.p$dunem <- diff(crime2.p$unem)

> # Display selected variables for observations 1-6:
> crime2.p[1:6,c("id","time","year","dyear","crmrte","dcrmrte","unem","dunem")]

id time year dyear crmrte dcrmrte unem dunem
1-1 1 1 82 NA 74.65756 NA 8.2 NA
1-2 1 2 87 5 70.11729 -4.540268 3.7 -4.5
2-1 2 1 82 NA 92.93487 NA 8.1 NA
2-2 2 2 87 5 89.97221 -2.962654 5.4 -2.7
3-1 3 1 82 NA 83.61113 NA 9.0 NA
3-2 3 2 87 5 77.19476 -6.416374 5.9 -3.1

> # Estimate FD model with lm on differenced data:
> coeftest( lm(dcrmrte~dunem, data=crime2.p) )

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.40220 4.70212 3.2756 0.00206 **
dunem 2.21800 0.87787 2.5266 0.01519 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # Estimate FD model with plm on original data:
> coeftest( plm(crmrte~unem, data=crime2.p, model="fd") )

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.40220 4.70212 3.2756 0.00206 **
unem 2.21800 0.87787 2.5266 0.01519 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Generating the differenced values and using lm on them is actually unnecessary. Package plm
provide the versatile command plm which implements FD and other estimators, some of which we
will use in chapter 14. It works just like lm but is directly applied to the original variables and
does the necessary calculations internally. With the option model="pooling", the pooled OLS
estimator is requested, option model="fd" produces the FD estimator. As the output of Script 13.6
(Example-FD.R) shows, the parameter estimates are exactly the same as our pedestrian calculations.

Wooldridge, Example 13.9: County Crime Rates in North Carolina13.9

Script 13.7 (Example-13-9.R) analyzes the data CRIME4.dta already used in Script 13.5
(Example-PLM-Calcs.R). Just for illustration, we calculate the first difference of crmrte and dis-
play the first nine rows of data. The first difference is NA for the first year for each county. Then we
estimate the model in first differences using plm.
Note that in this specification, all variables are automatically differenced, so they have the intuitive
interpretation in the level equation. In the results reported by Wooldridge (2019), the year dummies are
not differenced which only affects the interpretation of the year coefficients. To reproduce the exact
same results as Wooldridge (2019), we could use a pooled OLS estimator and explicitly difference the
other variables:

plm(diff(log(crmrte)) ~ d83+d84+d85+d86+d87+diff(lprbarr)+diff(lprbconv)+
diff(lprbpris)+diff(lavgsen)+diff(lpolpc),
data=pdata, model="pooling")



224 13. Pooling Cross-Sections Across Time: Simple Panel Data Methods

We will repeat this example with “robust” standard errors in Section 14.4.

Output of Script 13.7: Example-13-9.R

> library(plm);library(lmtest)

> data(crime4, package=’wooldridge’)

> crime4.p <- pdata.frame(crime4, index=c("county","year") )

> pdim(crime4.p)
Balanced Panel: n = 90, T = 7, N = 630

> # manually calculate first differences of crime rate:
> crime4.p$dcrmrte <- diff(crime4.p$crmrte)

> # Display selected variables for observations 1-9:
> crime4.p[1:9, c("county","year","crmrte","dcrmrte")]

county year crmrte dcrmrte
1-81 1 81 0.0398849 NA
1-82 1 82 0.0383449 -0.0015399978
1-83 1 83 0.0303048 -0.0080401003
1-84 1 84 0.0347259 0.0044211000
1-85 1 85 0.0365730 0.0018470995
1-86 1 86 0.0347524 -0.0018206015
1-87 1 87 0.0356036 0.0008512028
3-81 3 81 0.0163921 NA
3-82 3 82 0.0190651 0.0026730001

> # Estimate FD model:
> coeftest( plm(log(crmrte)~d83+d84+d85+d86+d87+lprbarr+lprbconv+
> lprbpris+lavgsen+lpolpc,data=crime4.p, model="fd") )

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0077134 0.0170579 0.4522 0.6513193
d83 -0.0998658 0.0238953 -4.1793 3.421e-05 ***
d84 -0.1478033 0.0412794 -3.5806 0.0003744 ***
d85 -0.1524144 0.0584000 -2.6098 0.0093152 **
d86 -0.1249001 0.0760042 -1.6433 0.1009087
d87 -0.0840734 0.0940003 -0.8944 0.3715175
lprbarr -0.3274942 0.0299801 -10.9237 < 2.2e-16 ***
lprbconv -0.2381066 0.0182341 -13.0583 < 2.2e-16 ***
lprbpris -0.1650463 0.0259690 -6.3555 4.488e-10 ***
lavgsen -0.0217606 0.0220909 -0.9850 0.3250506
lpolpc 0.3984264 0.0268820 14.8213 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



14. Advanced Panel Data Methods

In this chapter, we look into additional panel data models and methods. We start with the widely
used fixed effects (FE) estimator in Section 14.1, followed by random effects (RE) in Section 14.2. The
dummy variable regression and correlated random effects approaches presented in Section 14.3 can
be used as alternatives and generalizations of FE. Finally, we cover robust formulas for the variance-
covariance matrix and the implied “clustered” standard errors in Section 14.4. We will come back to
panel data in combination with instrumental variables in Section 15.6.

14.1. Fixed Effects Estimation

We start from the same basic unobserved effects models as Equation 13.2. Instead of first differencing,
we get rid of the unobserved individual effect ai using the within transformation:

yit = β0 + β1xit1 + · · ·+ βkxitk + ai + uit; t = 1, . . . , T; i = 1, . . . , n,
ȳi = β0 + β1 x̄i1 + · · ·+ βk x̄ik + ai + ūi

ÿit = yit − ȳi = β1 ẍit1 + · · ·+ βk ẍitk + üit, (14.1)

where ȳi is the average of yit over time for cross-sectional unit i and for the other variables accord-
ingly. The within transformation subtracts these individual averages from the respective observa-
tions yit. We already know how to conveniently calculate these demeaned variables like ÿit using the
command Within from Section 13.4.

The fixed effects (FE) estimator simply estimates the demeaned Equation 14.1 using pooled OLS.
Instead of applying the within transformation to all variables and running lm, we can simply use plm
on the original data with the option model="within". This has the additional advantage that the
degrees of freedom are adjusted to the demeaning and the variance-covariance matrix and standard
errors are adjusted accordingly. We will come back to different ways to get the same estimates in
Section 14.3.

Wooldridge, Example 14.2: Has the Return to Education Changed over
Time?14.2

We estimate the change of the return to education over time using a fixed effects estimator. Script
14.1 (Example-14-2.R) shows the implementation. The data set WAGEPAN.dta is a balanced panel for
n = 545 individuals over T = 8 years. It includes the index variables nr and year for individuals and years,
respectively. Since educ does not change over time, we cannot estimate its overall impact. However,
we can interact it with time dummies to see how the impact changes over time.



226 14. Advanced Panel Data Methods

Output of Script 14.1: Example-14-2.R

> library(plm)

> data(wagepan, package=’wooldridge’)

> # Generate pdata.frame:
> wagepan.p <- pdata.frame(wagepan, index=c("nr","year") )

> pdim(wagepan.p)
Balanced Panel: n = 545, T = 8, N = 4360

> # Estimate FE model
> summary( plm(lwage~married+union+factor(year)*educ,
> data=wagepan.p, model="within") )
Oneway (individual) effect Within Model

Call:
plm(formula = lwage ~ married + union + factor(year) * educ,

data = wagepan.p, model = "within")

Balanced Panel: n = 545, T = 8, N = 4360

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.

-4.152111 -0.125630 0.010897 0.160800 1.483401

Coefficients:
Estimate Std. Error t-value Pr(>|t|)

married 0.0548205 0.0184126 2.9773 0.002926 **
union 0.0829785 0.0194461 4.2671 2.029e-05 ***
factor(year)1981 -0.0224158 0.1458885 -0.1537 0.877893
factor(year)1982 -0.0057611 0.1458558 -0.0395 0.968495
factor(year)1983 0.0104297 0.1458579 0.0715 0.942999
factor(year)1984 0.0843743 0.1458518 0.5785 0.562965
factor(year)1985 0.0497253 0.1458602 0.3409 0.733190
factor(year)1986 0.0656064 0.1458917 0.4497 0.652958
factor(year)1987 0.0904448 0.1458505 0.6201 0.535216
factor(year)1981:educ 0.0115854 0.0122625 0.9448 0.344827
factor(year)1982:educ 0.0147905 0.0122635 1.2061 0.227872
factor(year)1983:educ 0.0171182 0.0122633 1.3959 0.162830
factor(year)1984:educ 0.0165839 0.0122657 1.3521 0.176437
factor(year)1985:educ 0.0237085 0.0122738 1.9316 0.053479 .
factor(year)1986:educ 0.0274123 0.0122740 2.2334 0.025583 *
factor(year)1987:educ 0.0304332 0.0122723 2.4798 0.013188 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares: 572.05
Residual Sum of Squares: 474.35
R-Squared: 0.1708
Adj. R-Squared: 0.048567
F-statistic: 48.9069 on 16 and 3799 DF, p-value: < 2.22e-16



14.2. Random Effects Models 227

14.2. Random Effects Models

We again base our analysis on the basic unobserved effects model in Equation 13.2. The random
effects (RE) model assumes that the unobserved effects ai are independent of (or at least uncorrelated
with) the regressors xitj for all t and j = 1, . . . , k. Therefore, our main motivation for using FD or FE
disappears: OLS consistently estimates the model parameters under this additional assumption.

However, like the situation with heteroscedasticity (see Section 8.3) and autocorrelation (see Sec-
tion 12.2), we can obtain more efficient estimates if we take into account the structure of the variances
and covariances of the error term. Wooldridge (2019, Section 14.2) shows that the GLS transforma-
tion that takes care of their special structure implied by the RE model leads to a quasi-demeaned
specification

ẙit = yit − θȳi = β0(1− θ) + β1 x̊it1 + · · ·+ βk x̊itk + v̊it, (14.2)

where ẙit is similar to the demeaned ÿit from Equation 14.1 but subtracts only a fraction θ of the
individual averages. The same holds for the regressors xitj and the composite error term vit = ai +uit.

The parameter θ = 1 −
√

σ2
u

σ2
u+Tσ2

a
depends on the variances of uit and ai and the length of the

time series dimension T. It is unknown and has to be estimated. Given our experience with FD
and FE estimation, it should not come as a surprise that we can estimate the RE model parameters
using the command plm with the option model="random". Different versions of estimating the
random effects parameter θ are implemented and can be chosen with the option random.method,
see Croissant and Millo (2008) for details.

Unlike with FD and FE estimators, we can include variables in our model that are constant over
time for each cross-sectional unit. The command pvar provides a list of these variables as well as of
those that do not vary within each point in time.

Wooldridge, Example 14.4: A Wage Equation Using Panel Data14.4

The data set WAGEPAN.dta was already used in Example 14.2. Script 14.2 (Example-14-4-1.R) loads
the data set and defines the panel structure. Then, we check the panel dimensions and get a list
of time-constant variables using pvar. With these preparations, we get estimates using OLS, RE, and
FE estimators in Script 14.3 (Example-14-4-2.R). We use plm with the options pooling, random, and
within, respectively. We once again use stargazer to display the results, with additional options for
labeling the estimates (column.labels), and selecting variables (keep) and statistics (keep.stat).

Output of Script 14.2: Example-14-4-1.R

> library(plm);library(stargazer)

> data(wagepan, package=’wooldridge’)

> # Generate pdata.frame:
> wagepan.p <- pdata.frame(wagepan, index=c("nr","year") )

> pdim(wagepan.p)
Balanced Panel: n = 545, T = 8, N = 4360

> # Check variation of variables within individuals
> pvar(wagepan.p)
no time variation: nr black hisp educ
no individual variation: year d81 d82 d83 d84 d85 d86 d87



228 14. Advanced Panel Data Methods

Output of Script 14.3: Example-14-4-2.R

> # Estimate different models
> wagepan.p$yr<-factor(wagepan.p$year)

> reg.ols<- (plm(lwage~educ+black+hisp+exper+I(exper^2)+married+union+yr,
> data=wagepan.p, model="pooling") )

> reg.re <- (plm(lwage~educ+black+hisp+exper+I(exper^2)+married+union+yr,
> data=wagepan.p, model="random") )

> reg.fe <- (plm(lwage~ I(exper^2)+married+union+yr,
> data=wagepan.p, model="within") )

> # Pretty table of selected results (not reporting year dummies)
> stargazer(reg.ols,reg.re,reg.fe, type="text",
> column.labels=c("OLS","RE","FE"),keep.stat=c("n","rsq"),
> keep=c("ed","bl","hi","exp","mar","un"))

==========================================
Dependent variable:

-----------------------------
lwage

OLS RE FE
(1) (2) (3)

------------------------------------------
educ 0.091*** 0.092***

(0.005) (0.011)

black -0.139*** -0.139***
(0.024) (0.048)

hisp 0.016 0.022
(0.021) (0.043)

exper 0.067*** 0.106***
(0.014) (0.015)

I(exper2) -0.002*** -0.005*** -0.005***
(0.001) (0.001) (0.001)

married 0.108*** 0.064*** 0.047**
(0.016) (0.017) (0.018)

union 0.182*** 0.106*** 0.080***
(0.017) (0.018) (0.019)

------------------------------------------
Observations 4,360 4,360 4,360
R2 0.189 0.181 0.181
==========================================
Note: *p<0.1; **p<0.05; ***p<0.01



14.2. Random Effects Models 229

The RE estimator needs stronger assumptions to be consistent than the FE estimator. On the other
hand, it is more efficient if these assumptions hold and we can include time constant regressors. A
widely used test of this additional assumption is the Hausman test. It is based on the comparison
between the FE and RE parameter estimates. Package plm offers the simple command phtest for
automated testing. It expects both estimates and reports test results including the appropriate p
values.

Script 14.4 (Example-HausmTest.R) uses the estimates obtained in Script 14.3 (Example-14-4-2.R)
and stored in variables reg.re and reg.fe to run the Hausman test for this model. With the p
value of 0.0033, the null hypothesis that the RE model is consistent is clearly rejected with sensible
significance levels like α = 5% or α = 1%.

Output of Script 14.4: Example-HausmTest.R

> # Note that the estimates "reg.fe" and "reg.re" are calculated in
> # Example 14.4. The scripts have to be run first.
>
> # Hausman test of RE vs. FE:
> phtest(reg.fe, reg.re)

Hausman Test

data: lwage ~ I(exper^2) + married + union + yr
chisq = 26.361, df = 10, p-value = 0.003284
alternative hypothesis: one model is inconsistent



230 14. Advanced Panel Data Methods

14.3. Dummy Variable Regression and Correlated Random
Effects

It turns out that we can get the FE parameter estimates in two other ways than the within transfor-
mation we used in Section 14.1. The dummy variable regression uses OLS on the original variables
in Equation 13.2 instead of the transformed ones. But it adds n− 1 dummy variables (or n dummies
and removes the constant), one for each cross-sectional unit i = 1, . . . , n. The simplest (although not
the computationally most efficient) way to implement this in R is to use the cross-sectional index as
another factor variable.

The third way to get the same results is the correlated random effects (CRE) approach. Instead of
assuming that the individual effects ai are independent of the regressors xitj, we assume that they
only depend on the averages over time x̄ij =

1
T ∑T

t=1 xitj:

ai = γ0 + γ1 x̄i1 + · · ·+ γk x̄ik + ri (14.3)
yit = β0 + β1xit1 + · · ·+ βkxitk + ai + uit

= β0 + γ0 + β1xit1 + · · ·+ βkxitk + γ1 x̄i1 + · · ·+ γk x̄ik + ri + uit (14.4)

If ri is uncorrelated with the regressors, we can consistently estimate the parameters of this model
using the RE estimator. In addition to the original regressors, we include their averages over time.
Remember from Section 13.4 that these averages are computed with the function Between.

Script 14.5 (Example-Dummy-CRE-1.R) uses WAGEPAN.dta again. We estimate the FE parame-
ters using the within transformation (reg.fe), the dummy variable approach (reg.dum), and the
CRE approach (reg.cre). We also estimate the RE version of this model (reg.re). Script 14.6
(Example-Dummy-CRE-2.R) produces the regression table using stargazer. The results confirm
that the first three methods deliver exactly the same parameter estimates, while the RE estimates
differ.

Script 14.5: Example-Dummy-CRE-1.R
library(plm);library(stargazer)
data(wagepan, package=’wooldridge’)

# Generate pdata.frame:
wagepan.p <- pdata.frame(wagepan, index=c("nr","year") )

# Estimate FE parameter in 3 different ways:
wagepan.p$yr<-factor(wagepan.p$year)
reg.fe <-(plm(lwage~married+union+year*educ,data=wagepan.p, model="within"))
reg.dum<-( lm(lwage~married+union+year*educ+factor(nr), data=wagepan.p))
reg.re <-(plm(lwage~married+union+year*educ,data=wagepan.p, model="random"))
reg.cre<-(plm(lwage~married+union+year*educ+Between(married)+Between(union)

,data=wagepan.p, model="random"))



14.3. Dummy Variable Regression and Correlated Random Effects 231

Output of Script 14.6: Example-Dummy-CRE-2.R

> stargazer(reg.fe,reg.dum,reg.cre,reg.re,type="text",model.names=FALSE,
> keep=c("married","union",":educ"),keep.stat=c("n","rsq"),
> column.labels=c("Within","Dummies","CRE","RE"))

====================================================
Dependent variable:

-----------------------------------
lwage

Within Dummies CRE RE
(1) (2) (3) (4)

----------------------------------------------------
married 0.055*** 0.055*** 0.055*** 0.078***

(0.018) (0.018) (0.018) (0.017)

union 0.083*** 0.083*** 0.083*** 0.108***
(0.019) (0.019) (0.019) (0.018)

Between(married) 0.127***
(0.044)

Between(union) 0.160***
(0.050)

year1981:educ 0.012 0.012 0.012 0.011
(0.012) (0.012) (0.012) (0.012)

year1982:educ 0.015 0.015 0.015 0.014
(0.012) (0.012) (0.012) (0.012)

year1983:educ 0.017 0.017 0.017 0.017
(0.012) (0.012) (0.012) (0.012)

year1984:educ 0.017 0.017 0.017 0.016
(0.012) (0.012) (0.012) (0.012)

year1985:educ 0.024* 0.024* 0.024* 0.023*
(0.012) (0.012) (0.012) (0.012)

year1986:educ 0.027** 0.027** 0.027** 0.026**
(0.012) (0.012) (0.012) (0.012)

year1987:educ 0.030** 0.030** 0.030** 0.030**
(0.012) (0.012) (0.012) (0.012)

----------------------------------------------------
Observations 4,360 4,360 4,360 4,360
R2 0.171 0.616 0.174 0.170
====================================================
Note: *p<0.1; **p<0.05; ***p<0.01



232 14. Advanced Panel Data Methods

Given we have estimated the CRE model, it is easy to test the null hypothesis that the RE estimator
is consistent. The additional assumptions needed are γ1 = · · · = γk = 0. They can easily be tested
using an F test as demonstrated in Script 14.7 (Example-CRE-test-RE.R). Like the Hausman test,
we clearly reject the null hypothesis that the RE model is appropriate with a tiny p value of about
0.00005.

Output of Script 14.7: Example-CRE-test-RE.R

> # Note that the estimates "reg.cre" are calculated in
> # Script "Example-Dummy-CRE-1.R" which has to be run first.
>
> # RE test as an F test on the "Between" coefficients
> library(car)

> linearHypothesis(reg.cre, matchCoefs(reg.cre,"Between"))
Linear hypothesis test

Hypothesis:
Between(married) = 0
Between(union) = 0

Model 1: restricted model
Model 2: lwage ~ married + union + year * educ + Between(married) + Between(union)

Res.Df Df Chisq Pr(>Chisq)
1 4342
2 4340 2 19.814 4.983e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Another advantage of the CRE approach is that we can add time-constant regressors to the model.
Since we cannot control for average values x̄ij for these variables, they have to be uncorrelated with ai
for consistent estimation of their coefficients. For the other coefficients of the time-varying variables,
we still don’t need these additional RE assumptions.

Script 14.8 (Example-CRE2.R) estimates another version of the wage equation using the CRE
approach. The variables married and union vary over time, so we can control for their between
effects. The variables educ, black, and hisp do not vary. For a causal interpretation of their
coefficients, we have to rely on uncorrelatedness with ai. Given ai includes intelligence and other
labor market success factors, this uncorrelatedness is more plausible for some variables (like gender
or race) than for other variables (like education).



14.3. Dummy Variable Regression and Correlated Random Effects 233

Output of Script 14.8: Example-CRE2.R

> library(plm)

> data(wagepan, package=’wooldridge’)

> # Generate pdata.frame:
> wagepan.p <- pdata.frame(wagepan, index=c("nr","year") )

> # Estimate CRE parameters
> wagepan.p$yr<-factor(wagepan.p$year)

> summary(plm(lwage~married+union+educ+black+hisp+Between(married)+
> Between(union), data=wagepan.p, model="random"))
Oneway (individual) effect Random Effect Model

(Swamy-Arora’s transformation)

Call:
plm(formula = lwage ~ married + union + educ + black + hisp +

Between(married) + Between(union), data = wagepan.p, model = "random")

Balanced Panel: n = 545, T = 8, N = 4360

Effects:
var std.dev share

idiosyncratic 0.1426 0.3776 0.577
individual 0.1044 0.3231 0.423
theta: 0.6182

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.

-4.530129 -0.161868 0.026625 0.202817 1.648168

Coefficients:
Estimate Std. Error z-value Pr(>|z|)

(Intercept) 0.6325629 0.1081545 5.8487 4.954e-09 ***
married 0.2416845 0.0176735 13.6750 < 2.2e-16 ***
union 0.0700438 0.0207240 3.3798 0.0007253 ***
educ 0.0760374 0.0087787 8.6616 < 2.2e-16 ***
black -0.1295162 0.0488981 -2.6487 0.0080802 **
hisp 0.0116700 0.0428188 0.2725 0.7852042
Between(married) -0.0797386 0.0442674 -1.8013 0.0716566 .
Between(union) 0.1918545 0.0506522 3.7877 0.0001521 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares: 668.91
Residual Sum of Squares: 620.38
R-Squared: 0.072556
Adj. R-Squared: 0.071064
Chisq: 340.466 on 7 DF, p-value: < 2.22e-16



234 14. Advanced Panel Data Methods

14.4. Robust (Clustered) Standard Errors

We argued above that under the RE assumptions, OLS is inefficient but consistent. Instead of using
RE, we could simply use OLS but would have to adjust the standard errors for the fact that the
composite error term vit = ai + uit is correlated over time because of the constant individual effect ai.
In fact, the variance-covariance matrix could be more complex than the RE assumption with i.i.d. uit
implies. These error terms could be serially correlated and/or heteroscedastic. This would invalidate
the standard errors not only of OLS but also of FD, FE, RE, and CRE.

There is an elegant solution, especially in panels with a large cross-sectional dimension. Similar
to standard errors that are robust with respect to heteroscedasticity in cross-sectional data (Section
8.1) and serial correlation in time series (Section 12.3), there are formulas for the variance-covariance
matrix for panel data that are robust with respect to heteroscedasticity and arbitrary correlations of
the error term within a cross-sectional unit (or “cluster”).

These “clustered” standard errors are mentioned in Wooldridge (2019, Section 14.4 and Example
13.9). Different versions of the clustered variance-covariance matrix can be computed with the com-
mand vcovHC from the package plm, see Croissant and Millo (2008) for details.1 It works for all
estimates obtained by plm and can be used as an input for regression tables using coeftest or
stargazer or testing commands like linearHypothesis.

Script 14.9 (Example-13-9-ClSE.R) repeats the FD regression from Example 13.9 but also re-
ports the regression table with clustered standard errors and respective t statistics in addition to the
usual standard errors. Similar to the heteroscedasticity-robust standard errors discussed in Section
8.1, there are different versions of formulas for clustered standard errors. We first use the default
type and then a type called "sss" (for “Stata small sample”) that makes a particular small sample
adjustment applied by Stata by default. These are the exact numbers reported by Wooldridge (2019).

1Don’t confuse this with vcovHC from the package sandwich which only gives heteroscedasticity-robust results and unfor-
tunately has the same name.



14.4. Robust (Clustered) Standard Errors 235

Output of Script 14.9: Example-13-9-ClSE.R

> library(plm);library(lmtest)

> data(crime4, package=’wooldridge’)

> # Generate pdata.frame:
> crime4.p <- pdata.frame(crime4, index=c("county","year") )

> # Estimate FD model:
> reg <- ( plm(log(crmrte)~d83+d84+d85+d86+d87+lprbarr+lprbconv+
> lprbpris+lavgsen+lpolpc,data=crime4.p, model="fd") )

> # Regression table with standard SE
> coeftest(reg)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0077134 0.0170579 0.4522 0.6513193
d83 -0.0998658 0.0238953 -4.1793 3.421e-05 ***
d84 -0.1478033 0.0412794 -3.5806 0.0003744 ***
d85 -0.1524144 0.0584000 -2.6098 0.0093152 **
d86 -0.1249001 0.0760042 -1.6433 0.1009087
d87 -0.0840734 0.0940003 -0.8944 0.3715175
lprbarr -0.3274942 0.0299801 -10.9237 < 2.2e-16 ***
lprbconv -0.2381066 0.0182341 -13.0583 < 2.2e-16 ***
lprbpris -0.1650463 0.0259690 -6.3555 4.488e-10 ***
lavgsen -0.0217606 0.0220909 -0.9850 0.3250506
lpolpc 0.3984264 0.0268820 14.8213 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # Regression table with "clustered" SE (default type HC0):
> coeftest(reg, vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0077134 0.0135800 0.5680 0.5702805
d83 -0.0998658 0.0219261 -4.5547 6.519e-06 ***
d84 -0.1478033 0.0355659 -4.1558 3.781e-05 ***
d85 -0.1524144 0.0505404 -3.0157 0.0026871 **
d86 -0.1249001 0.0623827 -2.0022 0.0457778 *
d87 -0.0840734 0.0773366 -1.0871 0.2774836
lprbarr -0.3274942 0.0555908 -5.8912 6.828e-09 ***
lprbconv -0.2381066 0.0389969 -6.1058 1.982e-09 ***
lprbpris -0.1650463 0.0451128 -3.6585 0.0002791 ***
lavgsen -0.0217606 0.0254368 -0.8555 0.3926740
lpolpc 0.3984264 0.1014068 3.9290 9.662e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



236 14. Advanced Panel Data Methods

> # Regression table with "clustered" SE (small-sample correction)
> # This is the default version used by Stata and reported by Wooldridge:
> coeftest(reg, vcovHC(reg, type="sss"))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0077134 0.0137846 0.5596 0.5760131
d83 -0.0998658 0.0222563 -4.4871 8.865e-06 ***
d84 -0.1478033 0.0361016 -4.0941 4.901e-05 ***
d85 -0.1524144 0.0513017 -2.9709 0.0031038 **
d86 -0.1249001 0.0633224 -1.9724 0.0490789 *
d87 -0.0840734 0.0785015 -1.0710 0.2846678
lprbarr -0.3274942 0.0564281 -5.8037 1.118e-08 ***
lprbconv -0.2381066 0.0395843 -6.0152 3.356e-09 ***
lprbpris -0.1650463 0.0457923 -3.6042 0.0003427 ***
lavgsen -0.0217606 0.0258200 -0.8428 0.3997305
lpolpc 0.3984264 0.1029342 3.8707 0.0001221 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



15. Instrumental Variables Estimation and
Two Stage Least Squares

Instrumental variables are potentially powerful tools for the identification and estimation of causal
effects. We start the discussion in Section 15.1 with the simplest case of one endogenous regressor
and one instrumental variable. Section 15.2 shows how to implement models with additional exoge-
nous regressors. In Section 15.3, we will introduce two stage least squares which efficiently deals
with several endogenous variables and several instruments.

Tests of the exogeneity of the regressors and instruments are presented in Sections 15.4 and 15.5,
respectively. Finally, Section 15.6 shows how to conveniently combine panel data estimators with
instrumental variables.

15.1. Instrumental Variables in Simple Regression Models

We start the discussion of instrumental variables (IV) regression with the most straightforward case
of only one regressor and only one instrumental variable. Consider the simple linear regression
model for cross-sectional data

y = β0 + β1x + u. (15.1)

The OLS estimator for the slope parameter is β̂OLS
1 = Cov(x,y)

Var(x) , see Equation 2.3. Suppose the regressor
x is correlated with the error term u, so OLS parameter estimators will be biased and inconsistent.

If we have a valid instrumental variable z, we can consistently estimate β1 using the IV estimator

β̂IV
1 =

Cov(z, y)
Cov(z, x)

. (15.2)

A valid instrument is correlated with the regressor x (“relevant”), so the denominator of Equation
15.2 is nonzero. It is also uncorrelated with the error term u (“exogenous”). Wooldridge (2019,
Section 15.1) provides more discussion and examples.

To implement IV regression in R, the package AER offers the convenient command ivreg. It works
similar to lm. In the formula specification, the regressor(s) are separated from the instruments with
a vertical line | (like in “conditional on z”):

ivreg( y ~ x | z )

Note that we can easily deal with heteroscedasticity: Results obtained by ivreg can be directly used
with robust standard errors from hccm (Package car) or vcovHC (package sandwich), see Section
8.1.



238 15. Instrumental Variables Estimation and Two Stage Least Squares

Wooldridge, Example 15.1: Return to Education for Married Women15.1

Script 15.1 (Example-15-1.R) uses data from MROZ.dta. We only analyze women with non-missing
wage, so we extract a subset from our data. We want to estimate the return to education for these
women. As an instrumental variable for education, we use the education of her father fatheduc.
First, we calculate the OLS and IV slope parameters according to Equations 2.3 and 15.2, respec-
tively. Remember that the with command defines that all variables names refer to our data frame
oursample. Then, the full OLS and IV estimates are calculated using the boxed routines lm and ivreg,
respectively. The results are once again displayed using stargazer. Not surprisingly, the slope parame-
ters match the manual results.

Output of Script 15.1: Example-15-1.R

> library(AER);library(stargazer)

> data(mroz, package=’wooldridge’)

> # restrict to non-missing wage observations
> oursample <- subset(mroz, !is.na(wage))

> # OLS slope parameter manually
> with(oursample, cov(log(wage),educ) / var(educ) )
[1] 0.1086487

> # IV slope parameter manually
> with(oursample, cov(log(wage),fatheduc) / cov(educ,fatheduc) )
[1] 0.05917348

> # OLS automatically
> reg.ols <- lm(log(wage) ~ educ, data=oursample)

> # IV automatically
> reg.iv <- ivreg(log(wage) ~ educ | fatheduc, data=oursample)

> # Pretty regression table
> stargazer(reg.ols,reg.iv, type="text")

===================================================================
Dependent variable:

------------------------------------
log(wage)

OLS instrumental
variable

(1) (2)
-------------------------------------------------------------------
educ 0.109*** 0.059*

(0.014) (0.035)

Constant -0.185 0.441
(0.185) (0.446)

-------------------------------------------------------------------
Observations 428 428
R2 0.118 0.093
Adjusted R2 0.116 0.091
Residual Std. Error (df = 426) 0.680 0.689
F Statistic 56.929*** (df = 1; 426)
===================================================================
Note: *p<0.1; **p<0.05; ***p<0.01



15.2. More Exogenous Regressors 239

15.2. More Exogenous Regressors

The IV approach can easily be generalized to include additional exogenous regressors, i.e. regressors
that are assumed to be unrelated to the error term. In ivreg, we have to include these variables
both to the list of regressors left of the | symbol and to the list of exogenous instrument to the right
of the | symbol.

Wooldridge, Example 15.4: Using College Proximity as an IV for Education15.4

In Script 15.2 (Example-15-4.R), we use CARD.dta to estimate the return to education. Education is al-
lowed to be endogenous and instrumented with the dummy variable nearc4 which indicates whether
the individual grew up close to a college. In addition, we control for experience, race, and regional
information. These variables are assumed to be exogenous and act as their own instruments.
We first check for relevance by regressing the endogenous independent variable educ on all exoge-
nous variables including the instrument nearc4. Its parameter is highly significantly different from zero,
so relevance is supported. We then estimate the log wage equation with OLS and IV. All results are
displayed in one table with stargazer.

Output of Script 15.2: Example-15-4.R

> library(AER);library(stargazer)

> data(card, package=’wooldridge’)

> # Checking for relevance: reduced form
> redf<-lm(educ ~ nearc4+exper+I(exper^2)+black+smsa+south+smsa66+reg662+
> reg663+reg664+reg665+reg666+reg667+reg668+reg669, data=card)

> # OLS
> ols<-lm(log(wage)~educ+exper+I(exper^2)+black+smsa+south+smsa66+reg662+
> reg663+reg664+reg665+reg666+reg667+reg668+reg669, data=card)

> # IV estimation
> iv <-ivreg(log(wage)~educ+exper+I(exper^2)+black+smsa+south+smsa66+
> reg662+reg663+reg664+reg665+reg666+reg667+reg668+reg669
> | nearc4+exper+I(exper^2)+black+smsa+south+smsa66+
> reg662+reg663+reg664+reg665+reg666+reg667+reg668+reg669
> , data=card)

> # Pretty regression table of selected coefficients
> stargazer(redf,ols,iv,type="text",
> keep=c("ed","near","exp","bl"),keep.stat=c("n","rsq"))

=============================================
Dependent variable:

--------------------------------
educ log(wage)
OLS OLS instrumental

variable
(1) (2) (3)

---------------------------------------------
nearc4 0.320***

(0.088)

educ 0.075*** 0.132**
(0.003) (0.055)



240 15. Instrumental Variables Estimation and Two Stage Least Squares

exper -0.413*** 0.085*** 0.108***
(0.034) (0.007) (0.024)

I(exper2) 0.001 -0.002*** -0.002***
(0.002) (0.0003) (0.0003)

black -0.936*** -0.199*** -0.147***
(0.094) (0.018) (0.054)

---------------------------------------------
Observations 3,010 3,010 3,010
R2 0.477 0.300 0.238
=============================================
Note: *p<0.1; **p<0.05; ***p<0.01

15.3. Two Stage Least Squares

Two stage least squares (2SLS) is a general approach for IV estimation when we have one or more en-
dogenous regressors and at least as many additional instrumental variables. Consider the regression
model

y1 = β0 + β1y2 + β2y3 + β3z1 + β4z2 + β5z3 + u1 (15.3)

The regressors y2 and y3 are potentially correlated with the error term u1, the regressors z1, z2, and
z3 are assumed to be exogenous. Because we have two endogenous regressors, we need at least two
additional instrumental variables, say z4 and z5.

The name of 2SLS comes from the fact that it can be performed in two stages of OLS regressions:
(1) Separately regress y2 and y3 on z1 through z5. Obtain fitted values ŷ2 and ŷ3.
(2) Regress y1 on ŷ2, ŷ3, and z1 through z3.

If the instruments are valid, this will give consistent estimates of the parameters β0 through β5.
Generalizing this to more endogenous regressors and instrumental variables is obvious.

This procedure can of course easily be implemented in R, remembering that fitted values are
obtained with fitted which can be directly called from the formula of lm. One of the problems of
this manual approach is that the resulting variance-covariance matrix and analyses based on them are
invalid. Conveniently, ivreg will automatically do these calculations and calculate correct standard
errors and the like.

Wooldridge, Example 15.5: Return to Education for Working Women15.5

We continue Example 15.1 and still want to estimate the return to education for women using the data
in MROZ.dta. Now, we use both mother’s and father’s education as instruments for their own education.
In Script 15.3 (Example-15-5.R), we obtain 2SLS estimates in two ways: First, we do both stages manu-
ally, including fitted education as fitted(stage1) as a regressor in the second stage. ivreg does this
automatically and delivers the same parameter estimates as the output table reveals. But the standard
errors differ slightly because the manual two stage version did not correct them.



15.3. Two Stage Least Squares 241

Output of Script 15.3: Example-15-5.R

> library(AER);library(stargazer)

> data(mroz, package=’wooldridge’)

> # restrict to non-missing wage observations
> oursample <- subset(mroz, !is.na(wage))

> # 1st stage: reduced form
> stage1 <- lm(educ~exper+I(exper^2)+motheduc+fatheduc, data=oursample)

> # 2nd stage
> man.2SLS<-lm(log(wage)~fitted(stage1)+exper+I(exper^2), data=oursample)

> # Automatic 2SLS estimation
> aut.2SLS<-ivreg(log(wage)~educ+exper+I(exper^2)
> | motheduc+fatheduc+exper+I(exper^2) , data=oursample)

> # Pretty regression table
> stargazer(stage1,man.2SLS,aut.2SLS,type="text",keep.stat=c("n","rsq"))

=============================================
Dependent variable:

------------------------------
educ log(wage)
OLS OLS instrumental

variable
(1) (2) (3)

---------------------------------------------
fitted(stage1) 0.061*

(0.033)

educ 0.061*
(0.031)

exper 0.045 0.044*** 0.044***
(0.040) (0.014) (0.013)

I(exper2) -0.001 -0.001** -0.001**
(0.001) (0.0004) (0.0004)

motheduc 0.158***
(0.036)

fatheduc 0.190***
(0.034)

Constant 9.103*** 0.048 0.048
(0.427) (0.420) (0.400)

---------------------------------------------
Observations 428 428 428
R2 0.211 0.050 0.136
=============================================
Note: *p<0.1; **p<0.05; ***p<0.01



242 15. Instrumental Variables Estimation and Two Stage Least Squares

15.4. Testing for Exogeneity of the Regressors
There is another way to get the same IV parameter estimates as with 2SLS. In the same setup as
above, this “control function approach” also consists of two stages:

(1) Like in 2SLS, regress y2 and y3 on z1 through z5. Obtain residuals v̂2 and v̂3 instead of fitted
values ŷ2 and ŷ3.

(2) Regress y1 on y2, y3, z1, z2, z3, and the first stage residuals v̂2 and v̂3.
This approach is as simple to implement as 2SLS and will also result in the same parameter estimates
and invalid OLS standard errors in the second stage (unless the dubious regressors y2 and y3 are in
fact exogenous).

After this second stage regression, we can test for exogeneity in a simple way assuming the instru-
ments are valid. We just need to do a t or F test of the null hypothesis that the parameters of the
first-stage residuals are equal to zero. If we reject this hypothesis, this indicates endogeneity of y2
and y3.

Wooldridge, Example 15.7: Return to Education for Working Women15.7

In Script 15.4 (Example-15-7.R), we continue Example 15.5 using the control function approach. Again,
we use both mother’s and father’s education as instruments. The first stage regression is identical as
in Script 15.3 (Example-15-5.R). The second stage adds the first stage residuals to the original list of
regressors. The parameter estimates are identical to both the manual 2SLS and the automatic ivreg
results. We can directly interpret the t test from the regression table as a test for exogeneity. Here, t =
1.6711 with a two-sided p value of p = 0.095, indicating a marginally significant evidence for endogeneity.

Output of Script 15.4: Example-15-7.R

> library(AER);library(lmtest)

> data(mroz, package=’wooldridge’)

> # restrict to non-missing wage observations
> oursample <- subset(mroz, !is.na(wage))

> # 1st stage: reduced form
> stage1<-lm(educ~exper+I(exper^2)+motheduc+fatheduc, data=oursample)

> # 2nd stage
> stage2<-lm(log(wage)~educ+exper+I(exper^2)+resid(stage1),data=oursample)

> # results including t tests
> coeftest(stage2)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.04810030 0.39457526 0.1219 0.9030329
educ 0.06139663 0.03098494 1.9815 0.0481824 *
exper 0.04417039 0.01323945 3.3363 0.0009241 ***
I(exper^2) -0.00089897 0.00039591 -2.2706 0.0236719 *
resid(stage1) 0.05816661 0.03480728 1.6711 0.0954406 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



15.5. Testing Overidentifying Restrictions 243

15.5. Testing Overidentifying Restrictions

If we have more instruments than endogenous variables, we can use either all or only some of them.
If all are valid, using all improves the accuracy of the 2SLS estimator and reduces its standard errors.
If the exogeneity of some is dubious, including them might cause inconsistency. It is therefore useful
to test for the exogeneity of a set of dubious instruments if we have another (large enough) set that
is undoubtedly exogenous. The procedure is described by Wooldridge (2019, Section 15.5):

(1) Estimate the model by 2SLS and obtain residuals û1.
(2) Regress û1 on all exogenous variables and calculate R2

1.
(3) The test statistic nR2

1 is asymptotically distributed as χ2
q, where q is the number of overidentifying

restrictions, i.e. number of instruments minus number of endogenous regressors.

Wooldridge, Example 15.8: Return to Education for Working Women15.8

We will again use the data and model of Examples 15.5 and 15.7. Script 15.5 (Example-15-8.R) esti-
mates the model using ivreg. The results are stored in variable res.2sls and their summary is printed.
We then run the auxiliary regression (2) and compute its R2 as r2. The test statistic is computed to be
teststat=0.378. We also compute the p value from the χ2

1 distribution. We cannot reject exogeneity
of the instruments using this test. But be aware of the fact that the underlying assumption that at least
one instrument is valid might be violated here.

15.6. Instrumental Variables with Panel Data

Instrumental variables can be used for panel data, too. In this way, we can get rid of time-constant
individual heterogeneity by first differencing or within transformations and then fix remaining en-
dogeneity problems with instrumental variables.

We know how to get panel data estimates using OLS on the transformed data, so we can easily use
IV as before. But we can do it even more conveniently: The plm command from the plm package
allows to directly enter instruments. As with ivreg, we can simply add a list of instruments after
the | sign in the formula.

Wooldridge, Example 15.10: Job Training and Worker Productivity15.10

We use the data set JTRAIN.dta to estimate the effect of job training hrsemp on the scrap rate. In
Script 15.6 (Example-15-10.R), we load the data, choose a subset of the years 1987 and 1988 and
store the data as a pdata.frame using the index variables fcode and year, see Section 13.3. Then we
estimate the parameters using first-differencing with the instrumental variable grant.



244 15. Instrumental Variables Estimation and Two Stage Least Squares

Output of Script 15.5: Example-15-8.R

> library(AER)

> data(mroz, package=’wooldridge’)

> # restrict to non-missing wage observations
> oursample <- subset(mroz, !is.na(wage))

> # IV regression
> summary( res.2sls <- ivreg(log(wage) ~ educ+exper+I(exper^2)
> | exper+I(exper^2)+motheduc+fatheduc,data=oursample) )

Call:
ivreg(formula = log(wage) ~ educ + exper + I(exper^2) | exper +

I(exper^2) + motheduc + fatheduc, data = oursample)

Residuals:
Min 1Q Median 3Q Max

-3.0986 -0.3196 0.0551 0.3689 2.3493

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0481003 0.4003281 0.120 0.90442
educ 0.0613966 0.0314367 1.953 0.05147 .
exper 0.0441704 0.0134325 3.288 0.00109 **
I(exper^2) -0.0008990 0.0004017 -2.238 0.02574 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6747 on 424 degrees of freedom
Multiple R-Squared: 0.1357, Adjusted R-squared: 0.1296
Wald test: 8.141 on 3 and 424 DF, p-value: 2.787e-05

> # Auxiliary regression
> res.aux <- lm(resid(res.2sls) ~ exper+I(exper^2)+motheduc+fatheduc
> , data=oursample)

> # Calculations for test
> ( r2 <- summary(res.aux)$r.squared )
[1] 0.0008833444

> ( n <- nobs(res.aux) )
[1] 428

> ( teststat <- n*r2 )
[1] 0.3780714

> ( pval <- 1-pchisq(teststat,1) )
[1] 0.5386372



15.6. Instrumental Variables with Panel Data 245

Output of Script 15.6: Example-15-10.R

> library(plm)

> data(jtrain, package=’wooldridge’)

> # Define panel data (for 1987 and 1988 only)
> jtrain.87.88 <- subset(jtrain,year<=1988)

> jtrain.p<-pdata.frame(jtrain.87.88, index=c("fcode","year"))

> # IV FD regression
> summary( plm(log(scrap)~hrsemp|grant, model="fd",data=jtrain.p) )
Oneway (individual) effect First-Difference Model
Instrumental variable estimation

(Balestra-Varadharajan-Krishnakumar’s transformation)

Call:
plm(formula = log(scrap) ~ hrsemp | grant, data = jtrain.p, model = "fd")

Unbalanced Panel: n = 47, T = 1-2, N = 92
Observations used in estimation: 45

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.

-2.3088292 -0.2188848 -0.0089255 0.2674362 2.4305637

Coefficients:
Estimate Std. Error z-value Pr(>|z|)

(Intercept) -0.0326684 0.1269512 -0.2573 0.79692
hrsemp -0.0141532 0.0079147 -1.7882 0.07374 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares: 17.29
Residual Sum of Squares: 17.015
R-Squared: 0.061927
Adj. R-Squared: 0.040112
Chisq: 3.19767 on 1 DF, p-value: 0.073743





16. Simultaneous Equations Models
In simultaneous equations models (SEM), both the dependent variable and at least one regressor are
determined jointly. This leads to an endogeneity problem and inconsistent OLS parameter estima-
tors. The main challenge for successfully using SEM is to specify a sensible model and make sure
it is identified, see Wooldridge (2019, Sections 16.1–16.3). We briefly introduce a general model and
the notation in Section 16.1.

As discussed in Chapter 15, 2SLS regression can solve endogeneity problems if there are enough
exogenous instrumental variables. This also works in the setting of SEM, an example is given
in Section 16.2. For estimating the whole system simultaneously, specialized commands such as
systemfit in R can be handy. It is demonstrated in Section 16.3. Using this package, more ad-
vanced estimation commands are straightforward to implement. We will show this for three-stage-
least-squares (3SLS) estimation in Section 16.4.

16.1. Setup and Notation

Consider the general SEM with q endogenous variables y1, . . . , yq and k exogenous variables
x1, . . . , xk. The system of equations is

y1 = α12y2 + α13y3 + · · ·+ α1qyq + β10 + β11x1 + · · ·+ β1kxk + u1

y2 = α21y1 + α23y3 + · · ·+ α2qyq + β20 + β21x1 + · · ·+ β2kxk + u2

...
yq = αq1y1 + αq2y2 + · · ·+ αqq−1yq−1 + βq0 + βq1x1 + · · ·+ βqkxk + uq

As discussed in more detail in Wooldridge (2019, Section 16), this system is not identified without
restrictions on the parameters. The order condition for identification of any equation is that if we
have m included endogenous regressors (i.e. α parameters that are not restricted to 0), we need to
exclude at least m exogenous regressors (i.e. restrict their β parameters to 0). They can then be used
as instrumental variables.

Wooldridge, Example 16.3: Labor Supply of Married, Working Women16.3

We have the two endogenous variables hours and wage which influence each other.

hours = α12 log(wage) + β10 + β11educ+ β12age+ β13kidslt6+ β14nwifeinc

+ β15exper+ β16exper
2 + u1

log(wage) = α21hours + β20 + β21educ+ β22age+ β23kidslt6+ β24nwifeinc

+ β25exper+ β26exper
2 + u2

For both equations to be identified, we have to exclude at least one exogenous regressor from each
equation. Wooldridge (2019) discusses a model in which we restrict β15 = β16 = 0 in the first and
β22 = β23 = β24 = 0 in the second equation.



248 16. Simultaneous Equations Models

16.2. Estimation by 2SLS

Estimation of each equation separately by 2SLS is straightforward once we have set up the system
and ensured identification. The excluded regressors in each equation serve as instrumental variables.
As shown is Chapter 15, the command ivreg from the package AER provides convenient 2SLS
estimation.

Wooldridge, Example 16.5: Labor Supply of Married, Working Women16.5

Script 16.1 (Example-16-5-ivreg.R) estimates the parameters of the two equations from Example 16.3
separately using ivreg.

Output of Script 16.1: Example-16-5-ivreg.R

> library(AER)

> data(mroz, package=’wooldridge’)

> oursample <- subset(mroz,!is.na(wage))

> # 2SLS regressions
> summary( ivreg(hours~log(wage)+educ+age+kidslt6+nwifeinc
> |educ+age+kidslt6+nwifeinc+exper+I(exper^2), data=oursample))

Call:
ivreg(formula = hours ~ log(wage) + educ + age + kidslt6 + nwifeinc |

educ + age + kidslt6 + nwifeinc + exper + I(exper^2), data = oursample)

Residuals:
Min 1Q Median 3Q Max

-4570.13 -654.08 -36.94 569.86 8372.91

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2225.662 574.564 3.874 0.000124 ***
log(wage) 1639.556 470.576 3.484 0.000545 ***
educ -183.751 59.100 -3.109 0.002003 **
age -7.806 9.378 -0.832 0.405664
kidslt6 -198.154 182.929 -1.083 0.279325
nwifeinc -10.170 6.615 -1.537 0.124942
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1354 on 422 degrees of freedom
Multiple R-Squared: -2.008, Adjusted R-squared: -2.043
Wald test: 3.441 on 5 and 422 DF, p-value: 0.004648



16.3. Joint Estimation of System 249

> summary( ivreg(log(wage)~hours+educ+exper+I(exper^2)
> |educ+age+kidslt6+nwifeinc+exper+I(exper^2), data=oursample))

Call:
ivreg(formula = log(wage) ~ hours + educ + exper + I(exper^2) |

educ + age + kidslt6 + nwifeinc + exper + I(exper^2), data = oursample)

Residuals:
Min 1Q Median 3Q Max

-3.49800 -0.29307 0.03208 0.36486 2.45912

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.6557254 0.3377883 -1.941 0.0529 .
hours 0.0001259 0.0002546 0.494 0.6212
educ 0.1103300 0.0155244 7.107 5.08e-12 ***
exper 0.0345824 0.0194916 1.774 0.0767 .
I(exper^2) -0.0007058 0.0004541 -1.554 0.1209
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6794 on 423 degrees of freedom
Multiple R-Squared: 0.1257, Adjusted R-squared: 0.1174
Wald test: 19.03 on 4 and 423 DF, p-value: 2.108e-14

16.3. Joint Estimation of System

Instead of manual estimation of each equation by ivreg, we can make use of the specialized com-
mand systemfit from the package systemfit. It is more convenient to use and offers straight-
forward implementation of additional estimators. We define the system of equations as a list of
formulas. Script 16.2 (Example-16-5-systemfit-prep.R) does this by first storing each equa-
tion as a formula and then combining them in the list eq.system. We also need to define the set
of exogenous regressors and instruments using a formula with a right-hand side only. Script 16.2
(Example-16-5-systemfit-prep.R) stores this specification in the variable instrum.

With these preparations, systemfit is simply called with the equation system and the instrument
set as arguments. Option method="2SLS" requests 2SLS estimation. As expected, the results
produced by Script 16.3 (Example-16-5-systemfit.R) are the same as with the separate ivreg
regressions seen previously.

Script 16.2: Example-16-5-systemfit-prep.R
library(systemfit)
data(mroz, package=’wooldridge’)
oursample <- subset(mroz,!is.na(wage))

# Define system of equations and instruments
eq.hrs <- hours ~ log(wage)+educ+age+kidslt6+nwifeinc
eq.wage <- log(wage)~ hours +educ+exper+I(exper^2)
eq.system<- list(eq.hrs, eq.wage)
instrum <- ~educ+age+kidslt6+nwifeinc+exper+I(exper^2)



Output of Script 16.3: Example-16-5-systemfit.R

> # 2SLS of whole system (run Example-16-5-systemfit-prep.R first!)
> summary(systemfit(eq.system,inst=instrum,data=oursample,method="2SLS"))

systemfit results
method: 2SLS

N DF SSR detRCov OLS-R2 McElroy-R2
system 856 845 773893309 155089 -2.00762 0.748802

N DF SSR MSE RMSE R2 Adj R2
eq1 428 422 7.73893e+08 1.83387e+06 1354.204541 -2.007617 -2.043253
eq2 428 423 1.95266e+02 4.61621e-01 0.679427 0.125654 0.117385

The covariance matrix of the residuals
eq1 eq2

eq1 1833869.938 -831.542690
eq2 -831.543 0.461621

The correlations of the residuals
eq1 eq2

eq1 1.000000 -0.903769
eq2 -0.903769 1.000000

2SLS estimates for ’eq1’ (equation 1)
Model Formula: hours ~ log(wage) + educ + age + kidslt6 + nwifeinc
Instruments: ~educ + age + kidslt6 + nwifeinc + exper + I(exper^2)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2225.66182 574.56412 3.87365 0.00012424 ***
log(wage) 1639.55561 470.57568 3.48415 0.00054535 ***
educ -183.75128 59.09981 -3.10917 0.00200323 **
age -7.80609 9.37801 -0.83238 0.40566404
kidslt6 -198.15429 182.92914 -1.08323 0.27932497
nwifeinc -10.16959 6.61474 -1.53741 0.12494167
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1354.204541 on 422 degrees of freedom
Number of observations: 428 Degrees of Freedom: 422
SSR: 773893113.843842 MSE: 1833869.938019 Root MSE: 1354.204541
Multiple R-Squared: -2.007617 Adjusted R-Squared: -2.043253

2SLS estimates for ’eq2’ (equation 2)
Model Formula: log(wage) ~ hours + educ + exper + I(exper^2)
Instruments: ~educ + age + kidslt6 + nwifeinc + exper + I(exper^2)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.655725440 0.337788292 -1.94123 0.052894 .
hours 0.000125900 0.000254611 0.49448 0.621223
educ 0.110330004 0.015524358 7.10690 5.0768e-12 ***
exper 0.034582356 0.019491555 1.77422 0.076746 .
I(exper^2) -0.000705769 0.000454080 -1.55428 0.120865
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.679427 on 423 degrees of freedom
Number of observations: 428 Degrees of Freedom: 423
SSR: 195.26556 MSE: 0.461621 Root MSE: 0.679427
Multiple R-Squared: 0.125654 Adjusted R-Squared: 0.117385



16.4. Outlook: Estimation by 3SLS 251

16.4. Outlook: Estimation by 3SLS

The results of systemfit provides additional information, see the output of Script 16.3
(Example-16-5-systemfit.R). An interesting piece of information is the correlation be-
tween the residuals of the equations. In the example, it is reported to be a substantially negative
-0.90. We can account for the correlation between the error terms to derive a potentially more
efficient parameter estimator than 2SLS. Without going into details here, the three stage least
squares (3SLS) estimator adds another stage to 2SLS by estimating the correlation and accounting
for it using a FGLS approach. For a detailed discussion of this and related methods, see for example
Wooldridge (2010, Chapter 8).

Using 3SLS in R is simple: Option method="3SLS" of systemfit is all we need to do as the
output of Script 16.4 (Example-16-5-3sls.R) shows.

Output of Script 16.4: Example-16-5-3sls.R

> # 3SLS of whole system (run Example-16-5-systemfit-prep.R first!)
>
> summary(systemfit(eq.system,inst=instrum,data=oursample,method="3SLS"))

systemfit results
method: 3SLS

N DF SSR detRCov OLS-R2 McElroy-R2
system 856 845 873749822 102713 -2.39569 0.8498

N DF SSR MSE RMSE R2 Adj R2
eq1 428 422 8.73750e+08 2.07050e+06 1438.922072 -2.395695 -2.43593
eq2 428 423 2.02143e+02 4.77879e-01 0.691288 0.094859 0.08630

The covariance matrix of the residuals used for estimation
eq1 eq2

eq1 1833869.938 -831.542690
eq2 -831.543 0.461621

The covariance matrix of the residuals
eq1 eq2

eq1 2070496.730 -941.665438
eq2 -941.665 0.477879

The correlations of the residuals
eq1 eq2

eq1 1.000000 -0.946674
eq2 -0.946674 1.000000



252 16. Simultaneous Equations Models

3SLS estimates for ’eq1’ (equation 1)
Model Formula: hours ~ log(wage) + educ + age + kidslt6 + nwifeinc
Instruments: ~educ + age + kidslt6 + nwifeinc + exper + I(exper^2)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2305.857474 511.540685 4.50767 8.5013e-06 ***
log(wage) 1781.933409 439.884241 4.05091 6.0726e-05 ***
educ -212.819501 53.727044 -3.96112 8.7558e-05 ***
age -9.514997 7.960948 -1.19521 0.23268
kidslt6 -192.359058 150.917507 -1.27460 0.20315
nwifeinc -0.176983 3.583623 -0.04939 0.96063
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1438.922072 on 422 degrees of freedom
Number of observations: 428 Degrees of Freedom: 422
SSR: 873749619.999905 MSE: 2070496.729858 Root MSE: 1438.922072
Multiple R-Squared: -2.395695 Adjusted R-Squared: -2.435928

3SLS estimates for ’eq2’ (equation 2)
Model Formula: log(wage) ~ hours + educ + exper + I(exper^2)
Instruments: ~educ + age + kidslt6 + nwifeinc + exper + I(exper^2)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.693920346 0.335995510 -2.06527 0.039506 *
hours 0.000190868 0.000247652 0.77071 0.441308
educ 0.112738573 0.015368872 7.33551 1.1364e-12 ***
exper 0.021428533 0.015383608 1.39295 0.164368
I(exper^2) -0.000302959 0.000268028 -1.13033 0.258978
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.691288 on 423 degrees of freedom
Number of observations: 428 Degrees of Freedom: 423
SSR: 202.142836 MSE: 0.477879 Root MSE: 0.691288
Multiple R-Squared: 0.094859 Adjusted R-Squared: 0.0863



17. Limited Dependent Variable Models and
Sample Selection Corrections

A limited dependent variable (LDV) can only take a limited set of values. An extreme case is a
binary variable that can only take two values. We already used such dummy variables as regressors
in Chapter 7. Section 17.1 discusses how to use them as dependent variables. Another example for
LDV are counts that take only non-negative integers, they are covered in Section 17.2. Similarly, Tobit
models discussed in Section 17.3 deal with dependent variables that can only take positive values
(or are restricted in a similar way), but are otherwise continuous.

Sections 17.4 and 17.5 are concerned with dependent variables that are continuous but not perfectly
observed. For some units of the censored, truncated, or selected observations we only know that they
are above or below a certain threshold or we don’t know anything about them.

17.1. Binary Responses

Binary dependent variables are frequently studied in applied econometrics. Because a dummy vari-
able y can only take the values 0 and 1, its (conditional) expected value is equal to the (conditional)
probability that y = 1:

E(y|x) = 0 · P(y = 0|x) + 1 · P(y = 1|x)
= P(y = 1|x) (17.1)

So when we study the conditional mean, it makes sense to think about it as the probability of
outcome y = 1. Likewise, the predicted value ŷ should be thought of as a predicted probability.

17.1.1. Linear Probability Models

If a dummy variable is used as the dependent variable y, we can still use OLS to estimate its relation
to the regressors x. These linear probability models are covered by Wooldridge (2019) in Section 7.5.
If we write the usual linear regression model

y = β0 + β1x1 + · · ·+ βkxk (17.2)

and make the usual assumptions, especially MLR.4: E(u|x) = 0, this implies for the conditional
mean (which is the probability that y = 1) and the predicted probabilities

P(y = 1|x) = E(y|x) = β0 + β1x1 + · · ·+ βkxk (17.3)

P̂(y = 1|x) = ŷ = β̂0 + β̂1x1 + · · ·+ β̂kxk (17.4)

The interpretation of the parameters is straightforward: β j is a measure of the average change in
probability of a “success” (y = 1) as xj increases by one unit and the other determinants remain
constant. Linear probability models automatically suffer from heteroscedasticity, so with OLS, we
should use heteroscedasticity-robust inference, see Section 8.1.



254 17. Limited Dependent Variable Models and Sample Selection Corrections

Wooldridge, Example 17.1: Married Women’s Labor Force Participation17.1

We study the probability that a woman is in the labor force depending on socio-demographic char-
acteristics. Script 17.1 (Example-17-1-1.R) estimates a linear probability model using the data set
mroz.dta. The estimated coefficient of educ can be interpreted as: an additional year of schooling
increases the probability that a woman is in the labor force ceteris paribus by 0.038 on average.

Output of Script 17.1: Example-17-1-1.R

> library(car); library(lmtest) # for robust SE

> data(mroz, package=’wooldridge’)

> # Estimate linear probability model
> linprob <- lm(inlf~nwifeinc+educ+exper+I(exper^2)+age+kidslt6+kidsge6,data=mroz)

> # Regression table with heteroscedasticity-robust SE and t tests:
> coeftest(linprob,vcov=hccm)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.58551922 0.15358032 3.8125 0.000149 ***
nwifeinc -0.00340517 0.00155826 -2.1852 0.029182 *
educ 0.03799530 0.00733982 5.1766 2.909e-07 ***
exper 0.03949239 0.00598359 6.6001 7.800e-11 ***
I(exper^2) -0.00059631 0.00019895 -2.9973 0.002814 **
age -0.01609081 0.00241459 -6.6640 5.183e-11 ***
kidslt6 -0.26181047 0.03215160 -8.1430 1.621e-15 ***
kidsge6 0.01301223 0.01366031 0.9526 0.341123
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

One problem with linear probability models is that P(y = 1|x) is specified as a linear function of
the regressors. By construction, there are (more or less realistic) combinations of regressor values
that yield ŷ < 0 or ŷ > 1. Since these are probabilities, this does not really make sense.

As an example, Script 17.2 (Example-17-1-2.R) calculates the predicted values for two women
(see Section 6.2 for how to predict after OLS estimation): Woman 1 is 20 years old, has no work
experience, 5 years of education, two children below age 6 and has additional family income of
100,000 USD. Woman 2 is 52 years old, has 30 years of work experience, 17 years of education, no
children and no other source of income. The predicted “probability” for woman 1 is −41%, the
probability for woman 2 is 104% as can also be easily checked with a calculator.

Output of Script 17.2: Example-17-1-2.R

> # predictions for two "extreme" women (run Example-17-1-1.R first!):
> xpred <- list(nwifeinc=c(100,0),educ=c(5,17),exper=c(0,30),
> age=c(20,52),kidslt6=c(2,0),kidsge6=c(0,0))

> predict(linprob,xpred)
1 2

-0.4104582 1.0428084



17.1. Binary Responses 255

17.1.2. Logit and Probit Models: Estimation

Specialized models for binary responses make sure that the implied probabilities are restricted be-
tween 0 and 1. An important class of models specifies the success probability as

P(y = 1|x) = G(β0 + β1x1 + · · ·+ βkxk) = G(xβ) (17.5)

where the “link function” G(z) always returns values between 0 and 1. In the statistics literature,
this type of models is often called generalized linear model (GLM) because a linear part xβ shows
up within the nonlinear function G.

For binary response models, by far the most widely used specifications for G are
• the probit model with G(z) = Φ(z), the standard normal cdf and

• the logit model with G(z) = Λ(z) = exp(z)
1+exp(z) , the cdf of the logistic distribution.

Wooldridge (2019, Section 17.1) provides useful discussions of the derivation and interpretation of
these models. Here, we are concerned with the practical implementation. In R, many generalized
linear models can be estimated with the command glm which works similar to lm. It accepts the
additional option

• family=binomial(link=logit) for the logit model or
• family=binomial(link=probit) for the probit model.

Maximum likelihood estimation (MLE) of the parameters is done automatically and the summary
of the results contains the most important regression table and additional information. Scripts
17.3 (Example-17-1-3.R) and 17.4 (Example-17-1-4.R) implement this for the logit and probit
model, respectively. The log likelihood value L (β̂) is not reported by default but can be requested
with the function logLik. Instead, a statistic called Residual deviance is reported in the stan-
dard output. It is simply defined as D(β̂) = −2L (β̂). Null deviance means D0 = −2L0 where
L0 is the likelihood of a model with an intercept only.

The two deviance statistics can be accessed for additional calculations from a stored result res
with res$deviance and res$null.deviance. Scripts 17.3 (Example-17-1-3.R) and 17.4
(Example-17-1-4.R) demonstrate the calculation of different statistics derived from these results.
McFadden’s pseudo R-squared can be calculated as

pseudo R2 = 1− L (β̂)

L0
= 1− D(β̂)

D0
. (17.6)



256 17. Limited Dependent Variable Models and Sample Selection Corrections

Output of Script 17.3: Example-17-1-3.R

> data(mroz, package=’wooldridge’)

> # Estimate logit model
> logitres<-glm(inlf~nwifeinc+educ+exper+I(exper^2)+age+kidslt6+kidsge6,
> family=binomial(link=logit),data=mroz)

> # Summary of results:
> summary(logitres)

Call:
glm(formula = inlf ~ nwifeinc + educ + exper + I(exper^2) + age +

kidslt6 + kidsge6, family = binomial(link = logit), data = mroz)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.1770 -0.9063 0.4473 0.8561 2.4032

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.425452 0.860365 0.495 0.62095
nwifeinc -0.021345 0.008421 -2.535 0.01126 *
educ 0.221170 0.043439 5.091 3.55e-07 ***
exper 0.205870 0.032057 6.422 1.34e-10 ***
I(exper^2) -0.003154 0.001016 -3.104 0.00191 **
age -0.088024 0.014573 -6.040 1.54e-09 ***
kidslt6 -1.443354 0.203583 -7.090 1.34e-12 ***
kidsge6 0.060112 0.074789 0.804 0.42154
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1029.75 on 752 degrees of freedom
Residual deviance: 803.53 on 745 degrees of freedom
AIC: 819.53

Number of Fisher Scoring iterations: 4

> # Log likelihood value:
> logLik(logitres)
’log Lik.’ -401.7652 (df=8)

> # McFadden’s pseudo R2:
> 1 - logitres$deviance/logitres$null.deviance
[1] 0.2196814



17.1. Binary Responses 257

Output of Script 17.4: Example-17-1-4.R

> data(mroz, package=’wooldridge’)

> # Estimate probit model
> probitres<-glm(inlf~nwifeinc+educ+exper+I(exper^2)+age+kidslt6+kidsge6,
> family=binomial(link=probit),data=mroz)

> # Summary of results:
> summary(probitres)

Call:
glm(formula = inlf ~ nwifeinc + educ + exper + I(exper^2) + age +

kidslt6 + kidsge6, family = binomial(link = probit), data = mroz)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.2156 -0.9151 0.4315 0.8653 2.4553

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.2700736 0.5080782 0.532 0.59503
nwifeinc -0.0120236 0.0049392 -2.434 0.01492 *
educ 0.1309040 0.0253987 5.154 2.55e-07 ***
exper 0.1233472 0.0187587 6.575 4.85e-11 ***
I(exper^2) -0.0018871 0.0005999 -3.145 0.00166 **
age -0.0528524 0.0084624 -6.246 4.22e-10 ***
kidslt6 -0.8683247 0.1183773 -7.335 2.21e-13 ***
kidsge6 0.0360056 0.0440303 0.818 0.41350
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1029.7 on 752 degrees of freedom
Residual deviance: 802.6 on 745 degrees of freedom
AIC: 818.6

Number of Fisher Scoring iterations: 4

> # Log likelihood value:
> logLik(probitres)
’log Lik.’ -401.3022 (df=8)

> # McFadden’s pseudo R2:
> 1 - probitres$deviance/probitres$null.deviance
[1] 0.2205805



258 17. Limited Dependent Variable Models and Sample Selection Corrections

17.1.3. Inference

The summary output of fitted glm results contains a standard regression table with parameters
and (asymptotic) standard errors. The next column is labeled z value instead of t value in the
output of lm. The interpretation is the same. The difference is that the standard errors only have
an asymptotic foundation and the distribution used for calculating p values is the standard normal
distribution (which is equal to the t distribution with very large degrees of freedom). The bottom
line is that tests for single parameters can be done as before, see Section 4.1.

For testing multiple hypotheses similar to the F test (see Section 4.3), the likelihood ratio test is
popular. It is based on comparing the log likelihood values of the unrestricted and the restricted
model. The test statistic is

LR = 2(Lur −Lr) = Dr − Dur (17.7)

where Lur and Lr are the log likelihood values of the unrestricted and restricted model, respectively,
and Dur and Dr are the corresponding reported deviance statistics. Under H0, the LR test statistic is
asymptotically distributed as χ2 with the degrees of freedom equal to the number of restrictions to
be tested. The test of overall significance is a special case just like with F-tests. The null hypothesis
is that all parameters except the constant are equal to zero. With the notation above, the test statistic
is

LR = 2
(
L (β̂)−L0

)
= D0 − D(β̂). (17.8)

Translated to R with fitted model results stored in res, this corresponds to
LR = res$null.deviance - res$deviance

The package lmtest also offers the LR test as the function lrtest including the convenient
calculation of p values. The syntax is

• lrtest(res) for a test of overall significance for model res
• lrtest(restr, unrestr) for a test of the restricted model restr vs. the unrestricted

model unrestr
Script 17.5 (Example-17-1-5.R) implements the test of overall significance for the probit model
using both manual and automatic calculations. It also tests the joint null hypothesis that experience
and age are irrelevant by first estimating the restricted model and then running the automated LR
test. Output of Script 17.5: Example-17-1-5.R

> ################################################################
> # Test of overall significance:
> # Manual calculation of the LR test statistic:
> probitres$null.deviance - probitres$deviance
[1] 227.142

> # Automatic calculations including p-values,...:
> library(lmtest)

> lrtest(probitres)
Likelihood ratio test

Model 1: inlf ~ nwifeinc + educ + exper + I(exper^2) + age + kidslt6 +
kidsge6

Model 2: inlf ~ 1
#Df LogLik Df Chisq Pr(>Chisq)

1 8 -401.30
2 1 -514.87 -7 227.14 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



17.1. Binary Responses 259

> ################################################################
> # Test of H0: experience and age are irrelevant
> restr <- glm(inlf~nwifeinc+educ+ kidslt6+kidsge6,
> family=binomial(link=probit),data=mroz)

> lrtest(restr,probitres)
Likelihood ratio test

Model 1: inlf ~ nwifeinc + educ + kidslt6 + kidsge6
Model 2: inlf ~ nwifeinc + educ + exper + I(exper^2) + age + kidslt6 +

kidsge6
#Df LogLik Df Chisq Pr(>Chisq)

1 5 -464.82
2 8 -401.30 3 127.03 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

17.1.4. Predictions

The command predict can calculate predicted values for the estimation sample (“fitted values”)
or arbitrary sets of regressor values also for binary response models estimated with glm. Given the
results are stored in variable res, we can calculate

• xi β̂ for the estimation sample with predict(res)

• xi β̂ for the regressor values stored in xpred with predict(res, xpred)

• ŷ = G(xi β̂) for the estimation sample with predict(res, type = "response")

• ŷ = G(xi β̂) for the regressor values stored in xpred with predict(res, xpred, type =
"response")

The predictions for the two hypothetical women introduced in Section 17.1.1 are repeated for the
linear probability, logit, and probit models in Script 17.6 (Example-17-1-6.R). Unlike the linear
probability model, the predicted probabilities from the logit and probit models remain between 0
and 1.

Output of Script 17.6: Example-17-1-6.R

> # Predictions from linear probability, probit and logit model:
> # (run 17-1-1.R through 17-1-4.R first to define the variables!)
> predict(linprob, xpred,type = "response")

1 2
-0.4104582 1.0428084

> predict(logitres, xpred,type = "response")
1 2

0.005218002 0.950049117

> predict(probitres,xpred,type = "response")
1 2

0.001065043 0.959869044



260 17. Limited Dependent Variable Models and Sample Selection Corrections

Figure 17.1. Predictions from binary response models (simulated data)

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y
linear prob.
logit
probit

If we only have one regressor, predicted values can nicely be plotted against it. Figure 17.1 shows
such a figure for a simulated data set. For interested readers, the script used for generating the data
and the figure is printed as Script 17.7 (Binary-Predictions.R) in Appendix IV (p. 351). In
this example, the linear probability model clearly predicts probabilities outside of the “legal” area
between 0 and 1. The logit and probit models yield almost identical predictions. This is a general
finding that holds for most data sets.

17.1.5. Partial Effects

The parameters of linear regression models have straightforward interpretations: β j measures the
ceteris paribus effect of xj on E(y|x). The parameters of nonlinear models like logit and probit have a
less straightforward interpretation since the linear index xβ affects ŷ through the link function G.

A useful measure of the influence is the partial effect (or marginal effect) which in a graph like
Figure 17.1 is the slope and has the same interpretation as the parameters in the linear model.
Because of the chain rule, it is

∂ŷ
∂xj

=
∂G(β̂0 + β̂1x1 + · · ·+ β̂kxk)

∂xj
(17.9)

= β̂ j · g(β̂0 + β̂1x1 + · · ·+ β̂kxk), (17.10)

where g(z) is the derivative of the link function G(z). So
• for the probit model, the partial effect is

∂ŷ
∂xj

= β̂ j · φ(xβ̂)

• for the logit model, it is
∂ŷ
∂xj

= β̂ j · λ(xβ̂)

where φ(z) and λ(z) are the pdfs of the standard normal and the logistic distribution, respectively.
The partial effect depends on the value of xβ̂. The pdfs have the famous bell-shape with highest

values in the middle and values close to zero in the tails. This is already obvious from Figure 17.1.



17.1. Binary Responses 261

Figure 17.2. Partial effects for binary response models (simulated data)

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

x

pa
rt

ia
l e

ffe
ct

linear prob.
logit
probit

Depending on the value of x, the slope of the probability differs. For our simulated data set, Figure
17.2 shows the estimated partial effects for all 100 observed x values. Interested readers can see the
complete code for this as Script 17.8 (Binary-Margeff.R) in Appendix IV (p. 352).

The fact that the partial effects differ by regressor values makes it harder to present the results in
a concise and meaningful way. There are two common ways to aggregate the partial effects:

• Partial effects at the average: PEA = β̂ j · g(xβ̂)

• Average partial effects: APE = 1
n ∑n

i=1 β̂ j · g(xi β̂) = β̂ j · g(xβ̂)

where x is the vector of sample averages of the regressors and g(xβ̂) is the sample average of g
evaluated at the individual linear index xi β̂. Both measures multiply each coefficient β̂ j with a
constant factor.

Script 17.9 (Example-17-1-7.R) implements the APE calculations for our labor force participa-
tion example using already known R functions:

1. The linear indices xi β̂ are calculated using predict

2. The factors g(xβ̂) are calculated by using the pdf functions dlogis and dnorm and then
averaging over the sample with mean.

3. The APEs are calculated by multiplying the coefficient vector obtained with coef with the
corresponding factor. Note that for the linear probability model, the partial effects are constant
and simply equal to the coefficients.

The results for the constant do not have a direct meaningful interpretation. The APEs for the other
variables don’t differ too much between the models. As a general observation, as long as we are
interested in APEs only and not in individual predictions or partial effects and as long as not too
many probabilities are close to 0 or 1, the linear probability model often works well enough.



262 17. Limited Dependent Variable Models and Sample Selection Corrections

Output of Script 17.9: Example-17-1-7.R

> # APEs (run 17-1-1.R through 17-1-4.R first to define the variables!)
>
> # Calculation of linear index at individual values:
> xb.log <- predict(logitres)

> xb.prob<- predict(probitres)

> # APE factors = average(g(xb))
> factor.log <- mean( dlogis(xb.log) )

> factor.prob<- mean( dnorm(xb.prob) )

> cbind(factor.log,factor.prob)
factor.log factor.prob

[1,] 0.1785796 0.3007555

> # average partial effects = beta*factor:
> APE.lin <- coef(linprob) * 1

> APE.log <- coef(logitres) * factor.log

> APE.prob<- coef(probitres) * factor.prob

> # Table of APEs
> cbind(APE.lin, APE.log, APE.prob)

APE.lin APE.log APE.prob
(Intercept) 0.5855192249 0.0759771297 0.081226125
nwifeinc -0.0034051689 -0.0038118135 -0.003616176
educ 0.0379953030 0.0394965238 0.039370095
exper 0.0394923895 0.0367641056 0.037097345
I(exper^2) -0.0005963119 -0.0005632587 -0.000567546
age -0.0160908061 -0.0157193606 -0.015895665
kidslt6 -0.2618104667 -0.2577536551 -0.261153464
kidsge6 0.0130122346 0.0107348186 0.010828887

A convenient package for calculating PEA and APE is mfx. Among others, it provides the com-
mands logitmfx and probitmfx. They estimate the corresponding model and display a regression
table not with parameter estimates but with PEAs with the option atmean=TRUE and APEs with the
option atmean=FALSE. Script 17.10 (Example-17-1-8.R) demonstrates this for the logit model of
our labor force participation example. The reported APEs are the same as those manually calculated
in Script 17.9 (Example-17-1-7.R).



17.2. Count Data: The Poisson Regression Model 263

Output of Script 17.10: Example-17-1-8.R

> # Automatic APE calculations with package mfx
> library(mfx)

> logitmfx(inlf~nwifeinc+educ+exper+I(exper^2)+age+kidslt6+kidsge6,
> data=mroz, atmean=FALSE)
Call:
logitmfx(formula = inlf ~ nwifeinc + educ + exper + I(exper^2) +

age + kidslt6 + kidsge6, data = mroz, atmean = FALSE)

Marginal Effects:
dF/dx Std. Err. z P>|z|

nwifeinc -0.00381181 0.00153898 -2.4769 0.013255 *
educ 0.03949652 0.00846811 4.6641 3.099e-06 ***
exper 0.03676411 0.00655577 5.6079 2.048e-08 ***
I(exper^2) -0.00056326 0.00018795 -2.9968 0.002728 **
age -0.01571936 0.00293269 -5.3600 8.320e-08 ***
kidslt6 -0.25775366 0.04263493 -6.0456 1.489e-09 ***
kidsge6 0.01073482 0.01339130 0.8016 0.422769
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

17.2. Count Data: The Poisson Regression Model

Instead of just 0/1-coded binary data, count data can take any non-negative integer 0,1,2,. . . If they
take very large numbers (like the number of students in a school), they can be approximated rea-
sonably well as continuous variables in linear models and estimated using OLS. If the numbers are
relatively small (like the number of children of a mother), this approximation might not work well.
For example, predicted values can become negative.

The Poisson regression model is the most basic and convenient model explicitly designed for count
data. The probability that y takes any value h ∈ {0, 1, 2, . . . } for this model can be written as

P(y = h|x) = e−exβ · eh·xβ

h!
(17.11)

The parameters of the Poisson model are much easier to interpret than those of a probit or logit
model. In this model, the conditional mean of y is

E(y|x) = exβ, (17.12)

so each slope parameter β j has the interpretation of a semi elasticity:

∂E(y|x)
∂xj

= β j · exβ = β j · E(y|x) (17.13)

⇔ β j =
1

E(y|x) ·
∂E(y|x)

∂xj
. (17.14)

If xj increases by one unit (and the other regressors remain the same), E(y|x) will increase roughly
by 100 · β j percent (the exact value is once again 100 · (eβ j − 1)).

A problem with the Poisson model is that it is quite restrictive. The Poisson distribution implicitly
restricts the variance of y to be equal to its mean. If this assumption is violated but the conditional



264 17. Limited Dependent Variable Models and Sample Selection Corrections

mean is still correctly specified, the Poisson parameter estimates are consistent, but the standard
errors and all inferences based on them are invalid. A simple solution is to interpret the Poisson
estimators as quasi-maximum likelihood estimators (QMLE). Similar to the heteroscedasticity-robust
inference for OLS discussed in Section 8.1, the standard errors can be adjusted.

Estimating Poisson regression models in R is straightforward. They also belong to the class of
generalized linear models (GLM) and can be estimated using glm. The option to specify a Pois-
son model is family=poisson. For the more robust QMLE standard errors, we simply specify
family=quasipoisson. For implementing more advanced count data models, see Kleiber and
Zeileis (2008, Section 5.3).

Wooldridge, Example 17.3: Poisson Regression for Number of Arrests17.3

We apply the Poisson regression model to study the number of arrests of young men in 1986. Script 17.11
(Example-17-3-1.R) imports the data and first estimates a linear regression model using OLS. Then, a
Poisson model is estimated using glm with the poisson specification for the GLM family. Finally, we esti-
mate the same model using the quasipoisson specification to adjust the standard errors for a potential
violation of the Poisson distribution. We display the results jointly in Script 17.12 (Example-17-3-2.R) us-
ing the stargazer command for a joint table. By construction, the parameter estimates are the same,
but the standard errors are larger for the QMLE.

Script 17.11: Example-17-3-1.R
data(crime1, package=’wooldridge’)

# Estimate linear model
lm.res <- lm(narr86~pcnv+avgsen+tottime+ptime86+qemp86+inc86+

black+hispan+born60, data=crime1)
# Estimate Poisson model
Poisson.res <- glm(narr86~pcnv+avgsen+tottime+ptime86+qemp86+inc86+

black+hispan+born60, data=crime1, family=poisson)
# Quasi-Poisson model
QPoisson.res<- glm(narr86~pcnv+avgsen+tottime+ptime86+qemp86+inc86+

black+hispan+born60, data=crime1, family=quasipoisson)



17.2. Count Data: The Poisson Regression Model 265

Output of Script 17.12: Example-17-3-2.R

> # Example 17.3: Regression table (run Example-17-3-1.R first!)
> library(stargazer) # package for regression output

> stargazer(lm.res,Poisson.res,QPoisson.res,type="text",keep.stat="n")

==================================================
Dependent variable:

-------------------------------------
narr86

OLS Poisson glm: quasipoisson
link = log

(1) (2) (3)
--------------------------------------------------
pcnv -0.132*** -0.402*** -0.402***

(0.040) (0.085) (0.105)

avgsen -0.011 -0.024 -0.024
(0.012) (0.020) (0.025)

tottime 0.012 0.024* 0.024
(0.009) (0.015) (0.018)

ptime86 -0.041*** -0.099*** -0.099***
(0.009) (0.021) (0.025)

qemp86 -0.051*** -0.038 -0.038
(0.014) (0.029) (0.036)

inc86 -0.001*** -0.008*** -0.008***
(0.0003) (0.001) (0.001)

black 0.327*** 0.661*** 0.661***
(0.045) (0.074) (0.091)

hispan 0.194*** 0.500*** 0.500***
(0.040) (0.074) (0.091)

born60 -0.022 -0.051 -0.051
(0.033) (0.064) (0.079)

Constant 0.577*** -0.600*** -0.600***
(0.038) (0.067) (0.083)

--------------------------------------------------
Observations 2,725 2,725 2,725
==================================================
Note: *p<0.1; **p<0.05; ***p<0.01



266 17. Limited Dependent Variable Models and Sample Selection Corrections

Figure 17.3. Conditional means for the Tobit model

3 4 5 6

−
3

−
2

−
1

0
1

2
3

x

y
y*

y
E(y*)
E(y)

17.3. Corner Solution Responses: The Tobit Model
Corner solutions describe situations where the variable of interest is continuous but restricted in
range. Typically, it cannot be negative. A significant share of people buy exactly zero amounts of
alcohol, tobacco, or diapers. The Tobit model explicitly models dependent variables like this. It can
be formulated in terms of a latent variable y∗ that can take all real values. For it, the classical linear
regression model assumptions MLR.1–MLR.6 are assumed to hold. If y∗ is positive, we observe
y = y∗. Otherwise, y = 0. Wooldridge (2019, Section 17.2) shows how to derive properties and the
likelihood function for this model.

The problem of interpreting the parameters is similar to logit or probit models. While β j measures
the ceteris paribus effect of xj on E(y∗|x), the interest is typically in y instead. The partial effect of
interest can be written as

∂E(y|x)
∂xj

= β j ·Φ
(

xβ

σ

)
(17.15)

and again depends on the regressor values x. To aggregate them over the sample, we can either
calculate the partial effects at the average (PEA) or the average partial effect (APE) just like with the
binary variable models.

Figure 17.3 depicts these properties for a simulated data set with only one regressor. Whenever
y∗ > 0, y = y∗ and the symbols ◦ and + are on top of each other. If y∗ < 0, then y = 0. Therefore,
the slope of E(y|x) gets close to zero for very low x values. The code that generated the data set and
the graph is hidden as Script 17.13 (Tobit-CondMean.R) in Appendix IV (p. 353).

For the practical ML estimation in R, there are different options. Package AER provides the com-
mand tobit and package censReg offers the command censReg. Both work very similarly and
are easy to use. We will present an example using the latter. The command censReg can be used
just like lm with the model formula and the data option. It will estimate the standard Tobit model
discussed here. Other corner solutions (y ≥ a or y ≤ b) can be specified using the options left and
right. After storing the results from censReg in a variable res, the PEA can easily be calculated
with margEff(res).



17.3. Corner Solution Responses: The Tobit Model 267

Wooldridge, Example 17.2: Married Women’s Annual Labor Supply17.2

We have already estimated labor supply models for the women in the data set mroz.dta, ignoring the
fact that the hours worked is necessarily non-negative. Script 17.14 (Example-17-2.R) estimates a Tobit
model accounting for this fact. It also calculates the PEA using margEff.

Output of Script 17.14: Example-17-2.R

> data(mroz, package=’wooldridge’)

> # Estimate Tobit model using censReg:
> library(censReg)

> TobitRes <- censReg(hours~nwifeinc+educ+exper+I(exper^2)+
> age+kidslt6+kidsge6, data=mroz )

> summary(TobitRes)

Call:
censReg(formula = hours ~ nwifeinc + educ + exper + I(exper^2) +

age + kidslt6 + kidsge6, data = mroz)

Observations:
Total Left-censored Uncensored Right-censored
753 325 428 0

Coefficients:
Estimate Std. error t value Pr(> t)

(Intercept) 965.30528 446.43631 2.162 0.030599 *
nwifeinc -8.81424 4.45910 -1.977 0.048077 *
educ 80.64561 21.58324 3.736 0.000187 ***
exper 131.56430 17.27939 7.614 2.66e-14 ***
I(exper^2) -1.86416 0.53766 -3.467 0.000526 ***
age -54.40501 7.41850 -7.334 2.24e-13 ***
kidslt6 -894.02174 111.87803 -7.991 1.34e-15 ***
kidsge6 -16.21800 38.64139 -0.420 0.674701
logSigma 7.02289 0.03706 189.514 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Newton-Raphson maximisation, 7 iterations
Return code 1: gradient close to zero
Log-likelihood: -3819.095 on 9 Df

> # Partial Effects at the average x:
> margEff(TobitRes)

nwifeinc educ exper I(exper^2) age
-5.326442 48.734094 79.504232 -1.126509 -32.876918

kidslt6 kidsge6
-540.256831 -9.800526

Another alternative for estimating Tobit models is the command survreg from package
survival. It is less straightforward to use but more flexible. We cannot comprehensively discuss



268 17. Limited Dependent Variable Models and Sample Selection Corrections

all features but just show how to reproduce the same results for Example 17.2 in Script 17.15
(Example-17-2-survreg.R). We will come back to this command in the next section.

Output of Script 17.15: Example-17-2-survreg.R

> # Estimate Tobit model using survreg:
> library(survival)

> res <- survreg(Surv(hours, hours>0, type="left") ~ nwifeinc+educ+exper+
> I(exper^2)+age+kidslt6+kidsge6, data=mroz, dist="gaussian")

> summary(res)

Call:
survreg(formula = Surv(hours, hours > 0, type = "left") ~ nwifeinc +

educ + exper + I(exper^2) + age + kidslt6 + kidsge6, data = mroz,
dist = "gaussian")

Value Std. Error z p
(Intercept) 965.3053 446.4361 2.16 0.03060
nwifeinc -8.8142 4.4591 -1.98 0.04808
educ 80.6456 21.5832 3.74 0.00019
exper 131.5643 17.2794 7.61 2.7e-14
I(exper^2) -1.8642 0.5377 -3.47 0.00053
age -54.4050 7.4185 -7.33 2.2e-13
kidslt6 -894.0217 111.8780 -7.99 1.3e-15
kidsge6 -16.2180 38.6414 -0.42 0.67470
Log(scale) 7.0229 0.0371 189.51 < 2e-16

Scale= 1122

Gaussian distribution
Loglik(model)= -3819.1 Loglik(intercept only)= -3954.9

Chisq= 271.59 on 7 degrees of freedom, p= 7e-55
Number of Newton-Raphson Iterations: 4
n= 753



17.4. Censored and Truncated Regression Models 269

17.4. Censored and Truncated Regression Models

Censored regression models are closely related to Tobit models. In fact, their parameters can be
estimated with the same software packages. General censored regression models also start from
a latent variable y∗. The observed dependent variable y is equal to y∗ for some (the uncensored)
observations. For the other observations, we only know an upper or lower bound for y∗. In the basic
Tobit model, we observe y = y∗ in the “uncensored” cases with y∗ > 0 and we only know that y∗ ≤ 0
if we observe y = 0. The censoring rules can be much more general. There could be censoring from
above or the thresholds can vary from observation to observation.

The main difference between Tobit and censored regression models is the interpretation. In the
former case, we are interested in the observed y, in the latter case, we are interested in the underlying
y∗.1 Censoring is merely a data problem that has to be accounted for instead of a logical feature of
the dependent variable. We already know how to estimate Tobit models. With censored regression,
we can use the same tools. The problem of calculating partial effects does not exist in this case since
we are interested in the linear E(y∗|x) and the slope parameters are directly equal to the partial
effects of interest.

Wooldridge, Example 17.4: Duration of Recidivism17.4

We are interested in the criminal prognosis of individuals released from prison. We model the time it
takes them to be arrested again. Explanatory variables include demographic characteristics as well as
a dummy variable workprg indicating the participation in a work program during their time in prison.
The 1445 former inmates observed in the data set recid.dta were followed for a while.
During that time, 893 inmates were not arrested again. For them, we only know that their true duration
y∗ is at least durat, which for them is the time between the release and the end of the observation
period, so we have right censoring. The threshold of censoring differs by individual depending on when
they were released.
Because of the more complicated selection rule, we use the command survreg for the estimation of
the model in Script 17.16 (Example-17-4.R). We need to supply the dependent variable log(durat)
as well as a dummy variable indicating uncensored observations. We generate a dummy variable
uncensored within the data frame based on the existing variable cens that represents censoring.
The parameters can directly be interpreted. Because of the logarithmic specification, they represent
semi-elasticities. For example married individuals take around 100 · β̂ = 34% longer to be arrested again.
(Actually, the accurate number is 100 · (eβ̂ − 1) = 40%.) There is no significant effect of the work program.

1Wooldridge (2019, Section 7.4) uses the notation w instead of y and y instead of y∗.



270 17. Limited Dependent Variable Models and Sample Selection Corrections

Output of Script 17.16: Example-17-4.R

> library(survival)

> data(recid, package=’wooldridge’)

> # Define Dummy for UNcensored observations
> recid$uncensored <- recid$cens==0

> # Estimate censored regression model:
> res<-survreg(Surv(log(durat),uncensored, type="right") ~ workprg+priors+
> tserved+felon+alcohol+drugs+black+married+educ+age,
> data=recid, dist="gaussian")

> # Output:
> summary(res)

Call:
survreg(formula = Surv(log(durat), uncensored, type = "right") ~

workprg + priors + tserved + felon + alcohol + drugs + black +
married + educ + age, data = recid, dist = "gaussian")

Value Std. Error z p
(Intercept) 4.099386 0.347535 11.80 < 2e-16
workprg -0.062572 0.120037 -0.52 0.6022
priors -0.137253 0.021459 -6.40 1.6e-10
tserved -0.019331 0.002978 -6.49 8.5e-11
felon 0.443995 0.145087 3.06 0.0022
alcohol -0.634909 0.144217 -4.40 1.1e-05
drugs -0.298160 0.132736 -2.25 0.0247
black -0.542718 0.117443 -4.62 3.8e-06
married 0.340684 0.139843 2.44 0.0148
educ 0.022920 0.025397 0.90 0.3668
age 0.003910 0.000606 6.45 1.1e-10
Log(scale) 0.593586 0.034412 17.25 < 2e-16

Scale= 1.81

Gaussian distribution
Loglik(model)= -1597.1 Loglik(intercept only)= -1680.4

Chisq= 166.74 on 10 degrees of freedom, p= 1.3e-30
Number of Newton-Raphson Iterations: 4
n= 1445

Truncation is a more serious problem than censoring since our observations are more severely
affected. If the true latent variable y∗ is above or below a certain threshold, the individual is not even
sampled. We therefore do not even have any information. Classical truncated regression models rely
on parametric and distributional assumptions to correct this problem. In R, they are available in the
package truncreg.

Figure 17.4 shows results for a simulated data set. Because it is simulated, we actually know the
values for everybody (hollow and solid dots). In our sample, we only observe those with y > 0
(solid dots). When applying OLS to this sample, we get a downward biased slope (dashed line).
Truncated regression fixes this problem and gives a consistent slope estimator (solid line). Script
17.17 (TruncReg-Simulation.R) which generated the data set and the graph is shown in Ap-
pendix IV (p. 354).



17.5. Sample Selection Corrections 271

Figure 17.4. Truncated regression: simulated example

3 4 5 6

−
3

−
2

−
1

0
1

2
3

x

y

all points
observed points
OLS fit
truncated regression

17.5. Sample Selection Corrections

Sample selection models are related to truncated regression models. We do have a random sample
from the population of interest, but we do not observe the dependent variable y for a non-random
sub-sample. The sample selection is not based on a threshold for y but on some other selection
mechanism.

Heckman’s selection model consists of a probit-like model for the binary fact whether y is observed
and a linear regression-like model for y. Selection can be driven by the same determinants as y but
should have at least one additional factor excluded from the equation for y. Wooldridge (2019,
Section 17.5) discusses the specification and estimation of these models in more detail.

The classical Heckman selection model can be estimated either in two steps using software for
probit and OLS as discussed by Wooldridge (2019) or by a specialized command using MLE. In R,
the package sampleSelection offers automated estimation for both approaches.

Wooldridge, Example 17.5: Wage offer equation for married women17.5

We once again look at the sample of women in the data set MROZ.dta. Of the 753 women, 428 worked
(inlf=1) and the rest did not work (inlf=0). For the latter, we do not observe the wage they would
have gotten had they worked. Script 17.18 (Example-17-5.R) estimates the Heckman selection model
using the command selection. It expects two formulas: one for the selection and one for the wage
equation. The option method="2step" requests implicit 2-step estimation to make the results compara-
ble to those reported by Wooldridge (2019). With the option method="ml", we would have gotten the
more efficient MLE. The summary of the results gives a typical regression table for both equations and
additional information.



272 17. Limited Dependent Variable Models and Sample Selection Corrections

Output of Script 17.18: Example-17-5.R

> library(sampleSelection)

> data(mroz, package=’wooldridge’)

> # Estimate Heckman selection model (2 step version)
> res<-selection(inlf~educ+exper+I(exper^2)+nwifeinc+age+kidslt6+kidsge6,
> log(wage)~educ+exper+I(exper^2), data=mroz, method="2step" )

> # Summary of results:
> summary(res)
--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
753 observations (325 censored and 428 observed)
15 free parameters (df = 739)
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.270077 0.508593 0.531 0.59556
educ 0.130905 0.025254 5.183 2.81e-07 ***
exper 0.123348 0.018716 6.590 8.34e-11 ***
I(exper^2) -0.001887 0.000600 -3.145 0.00173 **
nwifeinc -0.012024 0.004840 -2.484 0.01320 *
age -0.052853 0.008477 -6.235 7.61e-10 ***
kidslt6 -0.868328 0.118522 -7.326 6.21e-13 ***
kidsge6 0.036005 0.043477 0.828 0.40786
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5781032 0.3050062 -1.895 0.05843 .
educ 0.1090655 0.0155230 7.026 4.83e-12 ***
exper 0.0438873 0.0162611 2.699 0.00712 **
I(exper^2) -0.0008591 0.0004389 -1.957 0.05068 .
Multiple R-Squared:0.1569, Adjusted R-Squared:0.149

Error terms:
Estimate Std. Error t value Pr(>|t|)

invMillsRatio 0.03226 0.13362 0.241 0.809
sigma 0.66363 NA NA NA
rho 0.04861 NA NA NA
--------------------------------------------



18. Advanced Time Series Topics
After we have introduced time series concepts in Chapters 10 – 12, this chapter touches on some more
advanced topics in time series econometrics. Namely, we we look at infinite distributed lag models
in Section 18.1, unit roots tests in Section 18.2, spurious regression in Section 18.3, cointegration in
Section 18.4 and forecasting in Section 18.5.

18.1. Infinite Distributed Lag Models

We have covered finite distributed lag models in Section 10.3. We have estimated those and related
models in R using the dynlm package. In infinite distributed lag models, shocks in the regressors zt
have an infinitely long impact on yt, yt+1, . . . The long-run propensity is the overall future effect of
increasing zt by one unit and keeping it at that level.

Without further restrictions, infinite distributed lag models cannot be estimated. Wooldridge (2019,
Section 18.1) discusses two different models. The geometric (or Koyck) distributed lag model boils
down to a linear regression equation in terms of lagged dependent variables

yt = α0 + γzt + ρyt−1 + vt (18.1)

and has a long-run propensity of

LRP =
γ

1− ρ
. (18.2)

The rational distributed lag model can be written as a somewhat more general equation

yt = α0 + γ0zt + ρyt−1 + γ1zt−1 + vt (18.3)

and has a long-run propensity of

LRP =
γ0 + γ1

1− ρ
. (18.4)

In terms of the implementation of these models, there is nothing really new compared to Section
10.3. The only difference is that we include lagged dependent variables as regressors.

Wooldridge, Example 18.1: Housing Investment and Residential Price Infla-
tion18.1

Script 18.1 (Example-18-1.R) implements the geometric and the rational distributed lag models for the
housing investment equation. The dependent variable is detrended first by simply using the residual of
a regression on a linear time trend. We store this detrended variable in the data frame which is then
transformed into a time series object using ts, see Chapter 10.
The two models are estimated using dynlm and a regression table very similar to Wooldridge (2019,
Table 18.1) is produced with stargazer. Finally, we estimate the LRP for both models using the formulas
given above. We first extract the (named) coefficient vector as b and then do the calculations with
the named indices. For example b["gprice"] is the coefficient with the label "gprice" which in our
notation above corresponds to γ in the geometric distributed lag model.



274 18. Advanced Time Series Topics

Output of Script 18.1: Example-18-1.R

> library(dynlm); library(stargazer)

> data(hseinv, package=’wooldridge’)

> # detrended variable: residual from a regression on the obs. index:
> trendreg <- dynlm( log(invpc) ~ trend(hseinv), data=hseinv )

> hseinv$linv.detr <- resid( trendreg )

> # ts data:
> hseinv.ts <- ts(hseinv)

> # Koyck geometric d.l.:
> gDL<-dynlm(linv.detr~gprice + L(linv.detr) ,data=hseinv.ts)

> # rational d.l.:
> rDL<-dynlm(linv.detr~gprice + L(linv.detr) + L(gprice),data=hseinv.ts)

> stargazer(gDL,rDL, type="text", keep.stat=c("n","adj.rsq"))

=========================================
Dependent variable:

----------------------------
linv.detr

(1) (2)
-----------------------------------------
gprice 3.095*** 3.256***

(0.933) (0.970)

L(linv.detr) 0.340** 0.547***
(0.132) (0.152)

L(gprice) -2.936***
(0.973)

Constant -0.010 0.006
(0.018) (0.017)

-----------------------------------------
Observations 41 40
Adjusted R2 0.375 0.504
=========================================
Note: *p<0.1; **p<0.05; ***p<0.01

> # LRP geometric DL:
> b <- coef(gDL)

> b["gprice"] / (1-b["L(linv.detr)"])
gprice

4.688434

> # LRP rationalDL:
> b <- coef(rDL)

> (b["gprice"]+b["L(gprice)"]) / (1-b["L(linv.detr)"])
gprice

0.7066801



18.2. Testing for Unit Roots 275

18.2. Testing for Unit Roots

We have covered strongly dependent unit root processes in Chapter 11 and promised to supply tests
for unit roots later. There are several tests available. Conceptually, the Dickey-Fuller (DF) test is the
simplest. If we want to test whether variable y has a unit root, we regress ∆yt on yt−1. The test
statistic is the usual t-test statistic of the slope coefficient. One problem is that because of the unit
root, this test statistic is not t or normally distributed, not even asymptotically. Instead, we have to
use special distribution tables for the critical values. The distribution also depends on whether we
allow for a time trend in this regression.

The augmented Dickey-Fuller (ADF) test is a generalization that allows for richer dynamics in the
process of y. To implement it, we add lagged values ∆yt−1, ∆yt−2, . . . to the differenced regression
equation.

Of course, working with the special (A)DF tables of critical values is somewhat inconvenient. In
R, the package tseries offers automated DF and ADF tests for models with time trends. Com-
mand adf.test(y) performs an ADF test with automatically selecting the number of lags in ∆y.
adf.test(y,k=1) chooses one lag and adf.test(y,k=0) requests zero lags, i.e. a simple DF
test. The package urca also offers different unit root tests, including the ADF test with and without
trend using the command ur.df.

Wooldridge, Example 18.4: Unit Root in Real GDP18.4

Script 18.2 (Example-18-4.R) implements an ADF test for the logarithm of U.S. real GDP including a
linear time trend. For a test with one lag in ∆y and time trend, the equation to estimate is

∆y = α + θyt−1 + γ1∆yt−1 + δtt + et.

We already know how to implement such a regression. The different terms and their equivalent in dynlm
syntax are:

• ∆y = d(y)

• yt−1 = L(y)

• ∆yt−1 = L(d(y))

• t = trend(data)

The relevant test statistic is t = −2.421 and the critical values are given in Wooldridge (2019, Table 18.3).
More conveniently, the script also uses the automatic command adf.test which reports a p value of
0.41. So the null hypothesis of a unit root cannot be rejected with any reasonable significance level.
Script 18.3 (Example-18-4-urca.R) repeats the same analysis but uses the package urca.



276 18. Advanced Time Series Topics

Output of Script 18.2: Example-18-4.R

> library(dynlm)

> data(inven, package=’wooldridge’)

> # variable to test: y=log(gdp)
> inven$y <- log(inven$gdp)

> inven.ts<- ts(inven)

> # summary output of ADF regression:
> summary(dynlm( d(y) ~ L(y) + L(d(y)) + trend(inven.ts), data=inven.ts))

Time series regression with "ts" data:
Start = 3, End = 37

Call:
dynlm(formula = d(y) ~ L(y) + L(d(y)) + trend(inven.ts), data = inven.ts)

Residuals:
Min 1Q Median 3Q Max

-0.046332 -0.012563 0.004026 0.013572 0.030789

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.650922 0.666399 2.477 0.0189 *
L(y) -0.209621 0.086594 -2.421 0.0215 *
L(d(y)) 0.263751 0.164739 1.601 0.1195
trend(inven.ts) 0.005870 0.002696 2.177 0.0372 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02011 on 31 degrees of freedom
Multiple R-squared: 0.268, Adjusted R-squared: 0.1972
F-statistic: 3.783 on 3 and 31 DF, p-value: 0.02015

> # automated ADF test using tseries:
> library(tseries)

> adf.test(inven$y, k=1)

Augmented Dickey-Fuller Test

data: inven$y
Dickey-Fuller = -2.4207, Lag order = 1, p-value = 0.4092
alternative hypothesis: stationary



18.2. Testing for Unit Roots 277

Output of Script 18.3: Example-18-4-urca.R

> library(urca)

> data(inven, package=’wooldridge’)

> # automated ADF test using urca:
> summary( ur.df(log(inven$gdp) , type = c("trend"), lags = 1) )

###############################################
# Augmented Dickey-Fuller Test Unit Root Test #
###############################################

Test regression trend

Call:
lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)

Residuals:
Min 1Q Median 3Q Max

-0.046332 -0.012563 0.004026 0.013572 0.030789

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.656792 0.669068 2.476 0.0189 *
z.lag.1 -0.209621 0.086594 -2.421 0.0215 *
tt 0.005870 0.002696 2.177 0.0372 *
z.diff.lag 0.263751 0.164739 1.601 0.1195
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02011 on 31 degrees of freedom
Multiple R-squared: 0.268, Adjusted R-squared: 0.1972
F-statistic: 3.783 on 3 and 31 DF, p-value: 0.02015

Value of test-statistic is: -2.4207 8.2589 4.4035

Critical values for test statistics:
1pct 5pct 10pct

tau3 -4.15 -3.50 -3.18
phi2 7.02 5.13 4.31
phi3 9.31 6.73 5.61



278 18. Advanced Time Series Topics

18.3. Spurious Regression

Unit roots generally destroy the usual (large sample) properties of estimators and tests. A leading
example is spurious regression. Suppose two variables x and y are completely unrelated but both
follow a random walk:

xt = xt−1 + at

yt = yt−1 + et,

where at and et are i.i.d. random innovations. If we want to test whether they are related from a
random sample, we could simply regress y on x. A t test should reject the (true) null hypothesis that
the slope coefficient is equal to zero with a probability of α, for example 5%. The phenomenon of
spurious regression implies that this happens much more often.

Script 18.4 (Simulate-Spurious-Regression-1.R) simulates this model for one sample. Re-
member from Section 11.2 how to simulate a random walk in a simple way: with a starting value of
zero, it is just the cumulative sum of the innovations. The time series for this simulated sample of
size n = 50 is shown in Figure 18.1. When we regress y on x, the t statistic for the slope parameter is
larger than 4 with a p value much smaller than 1%. So we would reject the (correct) null hypothesis
that the variables are unrelated.

Figure 18.1. Spurious regression: simulated data from Script 18.4

0 10 20 30 40 50

−
15

−
10

−
5

0

Index

x

x
y



18.3. Spurious Regression 279

Output of Script 18.4: Simulate-Spurious-Regression-1.R

> # Initialize Random Number Generator
> set.seed(29846)

> # i.i.d. N(0,1) innovations
> n <- 50

> e <- rnorm(n)

> a <- rnorm(n)

> # independent random walks
> x <- cumsum(a)

> y <- cumsum(e)

> # plot
> plot(x,type="l",lty=1,lwd=1)

> lines(y ,lty=2,lwd=2)

> legend("topright",c("x","y"), lty=c(1,2), lwd=c(1,2))

> # Regression of y on x
> summary( lm(y~x) )

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-3.5342 -1.4938 -0.2549 1.4803 4.6198

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.15050 0.56498 -5.576 1.11e-06 ***
x 0.29588 0.06253 4.732 2.00e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.01 on 48 degrees of freedom
Multiple R-squared: 0.3181, Adjusted R-squared: 0.3039
F-statistic: 22.39 on 1 and 48 DF, p-value: 1.997e-05

We know that by definition, a valid test should reject a true null hypothesis with a probabil-
ity of α, so maybe we were just unlucky with the specific sample we took. We therefore re-
peat the same analysis with 10,000 samples from the same data generating process in Script 18.5
(Simulate-Spurious-Regression-2.R). For each of the samples, we store the p value of the
slope parameter in a vector named pvals. After these simulations are run, we simply check how
often we would have rejected H0 : β1 = 0 by comparing these p values with 0.05.

We find that in 6, 626 of the samples, so in 66% instead of α = 5%, we rejected H0. So the t test
seriously screws up the statistical inference because of the unit roots.



280 18. Advanced Time Series Topics

Output of Script 18.5: Simulate-Spurious-Regression-2.R

> # Initialize Random Number Generator
> set.seed(29846)

> # generate 10,000 independent random walks
> # and store the p val of the t test
> pvals <- numeric(10000)

> for (r in 1:10000) {
> # i.i.d. N(0,1) innovations
> n <- 50
> a <- rnorm(n)
> e <- rnorm(n)
> # independent random walks
> x <- cumsum(a)
> y <- cumsum(e)
> # regression summary
> regsum <- summary(lm(y~x))
> # p value: 2nd row, 4th column of regression table
> pvals[r] <- regsum$coef[2,4]
> }

> # How often is p<5% ?
> table(pvals<=0.05)

FALSE TRUE
3374 6626

18.4. Cointegration and Error Correction Models

In Section 18.3, we just saw that it is not a good idea to do linear regression with integrated variables.
This is not generally true. If two variables are not only integrated (i.e. they have a unit root), but
cointegrated, linear regression with them can actually make sense. Often, economic theory suggests a
stable long-run relationship between integrated variables which implies cointegration. Cointegration
implies that in the regression equation

yt = β0 + β1xt + ut,

the error term u does not have a unit root, while both y and x do. A test for cointegration can
be based on this finding: We first estimate this model by OLS and then test for a unit root in the
residuals û. Again, we have to adjust the distribution of the test statistic and critical values. This
approach is called Engle-Granger test in Wooldridge (2019, Section 18.4) or Phillips–Ouliaris (PO)
test. It is implemented in package tseries as po.test and in package urca as ca.po.

If we find cointegration, we can estimate error correction models. In the Engle-Granger proce-
dure, these models can be estimated in a two-step procedure using OLS. There are also powerful
commands that automatically estimate different types of error correction models. Package urca
provides ca.jo and for structural models, package vars offers the command SVEC.



18.5. Forecasting 281

18.5. Forecasting

One major goal of time series analysis is forecasting. Given the information we have today, we want
to give our best guess about the future and also quantify our uncertainty. Given a time series model
for y, the best guess for yt+1 given information It is the conditional mean of E(yt+1|It). For a model
like

yt = δ0 + α1yt−1 + γ1zt−1 + ut, (18.5)

suppose we are at time t and know both yt and zt and want to predict yt+1. Also suppose that
E(ut|It−1) = 0. Then,

E(yt+1|It) = δ0 + α1yt + γ1zt (18.6)

and our prediction from an estimated model would be ŷt+1 = δ̂0 + α̂1yt + γ̂1zt.
We already know how to get in-sample and (hypothetical) out-of-sample predictions including

forecast intervals from linear models using the command predict. It can also be used for our
purposes.

There are several ways how the performance of forecast models can be evaluated. It makes a
lot of sense not to look at the model fit within the estimation sample but at the out-of-sample
forecast performances. Suppose we have used observations y1, . . . , yn for estimation and additionally
have observations yn+1, . . . , yn+m. For this set of observations, we obtain out-of-sample forecasts
fn+1, . . . , fn+m and calculate the m forecast errors

et = yt − ft for t = n + 1, . . . , n + m. (18.7)

We want these forecast errors to be as small (in absolute value) as possible. Useful measures are
the root mean squared error (RMSE) and the mean absolute error (MAE):

RMSE =

√
1
m

m

∑
h=1

e2
n+h (18.8)

MAE =
1
m

m

∑
h=1

∣∣en+h
∣∣ (18.9)

(18.10)

Wooldridge, Example 18.8: Forecasting the U.S. Unemployment Rate18.8

Script 18.6 (Example-18-8.R) estimates two simple models for forecasting the unemployment rate. The
first one is a basic AR(1) model with only lagged unemployment as a regressor, the second one adds
lagged inflation. We use the option end to restrict the estimation sample to years until 1996. After the
estimation, we make predictions including 95% forecast intervals. Wooldridge (2019) explains how this
can be done manually. We are somewhat lazy and simply use the command predict.



282 18. Advanced Time Series Topics

Output of Script 18.6: Example-18-8.R

> # load updataed data from URfIE Website since online file is incomplete
> library(dynlm); library(stargazer)

> data(phillips, package=’wooldridge’)

> tsdat=ts(phillips, start=1948)

> # Estimate models and display results
> res1 <- dynlm(unem ~ unem_1 , data=tsdat, end=1996)

> res2 <- dynlm(unem ~ unem_1+inf_1, data=tsdat, end=1996)

> stargazer(res1, res2 ,type="text", keep.stat=c("n","adj.rsq","ser"))

===================================================
Dependent variable:

-------------------------------
unem

(1) (2)
---------------------------------------------------
unem_1 0.732*** 0.647***

(0.097) (0.084)

inf_1 0.184***
(0.041)

Constant 1.572*** 1.304**
(0.577) (0.490)

---------------------------------------------------
Observations 48 48
Adjusted R2 0.544 0.677
Residual Std. Error 1.049 (df = 46) 0.883 (df = 45)
===================================================
Note: *p<0.1; **p<0.05; ***p<0.01

> # Predictions for 1997-2003 including 95% forecast intervals:
> predict(res1, newdata=window(tsdat,start=1997), interval="prediction")

fit lwr upr
1 5.526452 3.392840 7.660064
2 5.160275 3.021340 7.299210
3 4.867333 2.720958 7.013709
4 4.647627 2.493832 6.801422
5 4.501157 2.341549 6.660764
6 5.087040 2.946509 7.227571
7 5.819394 3.686837 7.951950

> predict(res2, newdata=window(tsdat,start=1997), interval="prediction")
fit lwr upr

1 5.348468 3.548908 7.148027
2 4.896451 3.090266 6.702636
3 4.509137 2.693393 6.324881
4 4.425175 2.607626 6.242724
5 4.516062 2.696384 6.335740
6 4.923537 3.118433 6.728641
7 5.350271 3.540939 7.159603



18.5. Forecasting 283

Wooldridge, Example 18.9: Comparing Out-of-Sample Forecast Perfor-
mances18.9

Script 18.7 (Example-18-9.R) calculates the forecast errors of the unemployment rate for the two mod-
els used in Example 18.8. The models are estimated using the sub sample until 1996 and the predictions
are made for the other seven available years until 2003. The actual unemployment rate and the fore-
casts are plotted – the result is shown in Figure 18.2. Finally, we calculate the RMSE and MAE for both
models. Both measures suggest that the second model including the lagged inflation performs better.

Output of Script 18.7: Example-18-9.R

> # Note: run Example-18-8.R first to generate the results res1 and res2
>
> # Actual unemployment and forecasts:
> y <- window(tsdat,start=1997)[,"unem"]

> f1 <- predict( res1, newdata=window(tsdat,start=1997) )

> f2 <- predict( res2, newdata=window(tsdat,start=1997) )

> # Plot unemployment and forecasts:
> matplot(time(y), cbind(y,f1,f2), type="l", col="black",lwd=2,lty=1:3)

> legend("topleft",c("Unempl.","Forecast 1","Forecast 2"),lwd=2,lty=1:3)

> # Forecast errors:
> e1<- y - f1

> e2<- y - f2

> # RMSE:
> sqrt(mean(e1^2))
[1] 0.5761199

> sqrt(mean(e2^2))
[1] 0.5217543

> # MAE:
> mean(abs(e1))
[1] 0.542014

> mean(abs(e2))
[1] 0.4841945



284 18. Advanced Time Series Topics

Figure 18.2. Out-of-sample forecasts for unemployment

1997 1998 1999 2000 2001 2002 2003

4.
0

4.
5

5.
0

5.
5

6.
0

1997

1998

1999

2000

2001

2002

2003Unempl.
Forecast 1
Forecast 2



19. Carrying Out an Empirical Project

We are now ready for serious empirical work. Chapter 19 of Wooldridge (2019) discusses the for-
mulation of interesting theories, collection of raw data, and the writing of research papers. We are
concerned with the data analysis part of a research project and will cover some aspects of using R
for real research.

This chapter is mainly about a few tips and tricks that might help to make our life easier by
organizing the analyses and the output of R in a systematic way. While we have worked with R
scripts throughout this book, Section 19.1 gives additional hints for using them effectively in larger
projects. Section 19.2 shows how the results of our analyses can be written to a text file instead of
just being displayed on the screen.

R Markdown is presented in Section 19.3. It is a straightforward markup language and is capable
of generating anything between clearly laid out results documentations and complete little research
papers that automatically include the analysis results. For heavy duty scientific writing, LATEX is a
widely used system which was for example used to generate this book. R and LATEX can be used
together efficiently and Section 19.4 shows how.

19.1. Working with R Scripts

We already argued in Section 1.1.2 that anything we do in R or any other statistical package should
be done in scripts or the equivalent. In this way, it is always transparent how we generated our
results. A typical empirical project has roughly the following steps:

1. Data Preparation: import raw data, recode and generate new variables, create sub-samples, ...
2. Generation of descriptive statistics, distribution of the main variables, ...
3. Estimation of the econometric models
4. Presentation of the results: tables, figures, ...
If we combine all these steps in one R script, it is very easy for us to understand how we came up

with the regression results even a year after we have done the analysis. At least as important: It is
also easy for our thesis supervisor, collaborators or journal referees to understand where the results
came from and to reproduce them. If we made a mistake at some point or get an updated raw data
set, it is easy to repeat the whole analysis to generate new results.

It is crucial to add helpful comments to the R scripts explaining what is done in each step. Scripts
should start with an explanation like the following:

Script 19.1: ultimate-calcs.R
########################################################################
# Project X:
# "The Ultimate Question of Life, the Universe, and Everything"
# Project Collaborators: Mr. X, Mrs. Y
#
# R Script "ultimate-calcs"
# by: F Heiss
# Date of this version: February 08, 2016
########################################################################



286 19. Carrying Out an Empirical Project

# The main calculation using the method "square root"
# (http://mathworld.wolfram.com/SquareRoot.html)
sqrt(1764)

If a project requires many and/or time-consuming calculations, it might be useful to separate them
into several R scripts. For example, we could have four different scripts corresponding to the steps
listed above:

• data.R

• descriptives.R

• estimation.R

• results.R

So once the potentially time-consuming data cleaning is done, we don’t have to repeat it every time
we run regressions. To avoid confusion, it is highly advisable to document interdependencies. Both
descriptives.R and estimation.R should at the beginning have a comment like

# Depends on data.R

And results.R could have a comment like

# Depends on estimation.R

Somewhere, we will have to document the whole work flow. The best way to do it is a master script
that calls the separate scripts to reproduce the whole analyses from raw data to tables and figures.
This can be done using the command source(scriptfile).

For generating the familiar output, we should add the option echo=TRUE. To avoid abbreviated
output, set max.deparse.length=1000 or another large number. For our example, a master file
could look like

Script 19.2: projecty-master.R
########################################################################
# Bachelor Thesis Mr. Z
# "Best Practice in Using R Scripts"
#
# R Script "master"
# Date of this version: 2020-08-13
########################################################################

# Some preparations:
setwd(~/bscthesis/r)
rm(list = ls())

# Call R scripts
source("data.R" ,echo=TRUE,max=1000) # Data import and cleaning
source("descriptives.R",echo=TRUE,max=1000) # Descriptive statistics
source("estimation.R" ,echo=TRUE,max=1000) # Estimation of model
source("results.R" ,echo=TRUE,max=1000) # Tables and Figures



19.2. Logging Output in Text Files 287

19.2. Logging Output in Text Files

Having the results appear on the screen and being able to copy and paste from there might work for
small projects. For larger projects, this is impractical. A straightforward way for writing all results to
a file is to use the command sink. If we want to write all output to a file logfile.txt, the basic
syntax is

sink("logfile.txt")
# Do your calculations here
sink()

All output between starting the log file with sink("logfile.txt") and stopping it with sink()
will be written to the file logfile.txt in the current working directory. We can of course use a
different directory e.g. with sink("~/mydir/logfile.txt"). Note that comments, commands,
and messages are not written to the file by default. The next section describes a more advanced way
to store and display R results.

19.3. Formatted Documents and Reports with R Markdown

R Markdown is a simple to use system that allows to generate formatted HTML, Microsoft Word,
and PDF documents which are automatically filled with results from R.

19.3.1. Basics

R Markdown can be used with the R package rmarkdown. An R Markdown file is a standard text
file but should have the file name extension .Rmd. It includes normal text, formatting instructions,
and R code. It is processed by R and generates a formatted document. As a simple example, let’s
turn Script 19.1 into a basic R Markdown document. The file looks like this:1

File ultimate-calcs-rmd.Rmd
/Documents/R/URfIE/19/ultimate-calcs-rmd.Rmd"

%%
%% This is file ‘.tex’,
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% fileerr.dtx (with options: ‘return’)
%%
%% This is a generated file.
%%
%% The source is maintained by the LaTeX Project team and bug
%% reports for it can be opened at https://latex-project.org/bugs/
%% (but please observe conditions on bug reports sent to that address!)
%%
%%
%% Copyright (C) 1993-2020
%% The LaTeX3 Project and any individual authors listed elsewhere
%% in this file.
%%
%% This file was generated from file(s) of the Standard LaTeX ‘Tools Bundle’.
%% --------------------------------------------------------------------------

1This file can be downloaded along with all other files presented here at http://www.URfIE.net.

http://www.URfIE.net


288 19. Carrying Out an Empirical Project

%%
%% It may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%% https://www.latex-project.org/lppl.txt
%% and version 1.3c or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This file may only be distributed together with a copy of the LaTeX
%% ‘Tools Bundle’. You may however distribute the LaTeX ‘Tools Bundle’
%% without such generated files.
%%
%% The list of all files belonging to the LaTeX ‘Tools Bundle’ is
%% given in the file ‘manifest.txt’.
%%
\message{File ignored}

\endinput
%%
%% End of file ‘.tex’.

The file starts with a header between the two --- that specifies a few standard properties like the
author and the date. Then we see basic text and a URL. The only line that actually involves R code
is framed by a ‘‘‘{r} at the beginning and a ‘‘‘ at the end.

Instead of running this file through R directly, we process it with tools from the package
rmarkdown. If ultimate-calcs-rmd.Rmd is the current working directory (otherwise, we need
to add the path), we can simply create a HTML document with

render("ultimate-calcs-rmd.Rmd")

The HTML document can be opened in any web browser, but also in word processors. Instead of
HTML documents, we can create Microsoft Word documents with

render("ultimate-calcs-rmd.Rmd",output_format="word_document")

If the computer has a working LATEX system installed, we can create a PDF file with

render("ultimate-calcs-rmd.Rmd",output_format="pdf_document")

With RStudio, R Markdown is even easier to use: When editing a R Markdown document, there
is a Knit HTML button on top of the editor window. It will render the document properly. By
default, the documents are created in the same directory and with the same file name (except the
extension). We can also choose a different file name and/or a different directory with the options
output_file=... and output_path=..., respectively.

All three formatted documents results look similar to each other and are displayed in Figure 19.1.

19.3.2. Advanced Features

There are countless possibilities to create useful and appealing R Markdown documents. We can
only give a few examples for the most important formatting instructions:

• # Header 1, ## Header 2, and ### Header 3 produce different levels of headers.
• *word* prints the word in italics.



19.3. Formatted Documents and Reports with R Markdown 289

Figure 19.1. R Markdown example: different output formats
HTML output:

Word output:

PDF output:



290 19. Carrying Out an Empirical Project

• **word** prints the word in bold.
• ‘word‘ prints the word in code-like typewriter font.
• We can create lists with bullets using * at the beginning of a line.
• We can suppress R code and/or output for a code chunk with echo=FALSE and
include=FALSE, respectively.

• If you are familiar with LATEX, displayed and inline formulas can be inserted using $...$ and
$$...$$ and the usual LATEX syntax, respectively.

• Inside of the text, we can add R results using ‘r someRexpression’.



19.3. Formatted Documents and Reports with R Markdown 291

Different formatting options for text and code chunks are demonstrated in the following R Mark-
down script. Its HTML output is shown in Figure 19.2.

File rmarkdown-examples.Rmd
/Documents/R/URfIE/19/rmarkdown-examples.Rmd"

%%
%% This is file ‘.tex’,
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% fileerr.dtx (with options: ‘return’)
%%
%% This is a generated file.
%%
%% The source is maintained by the LaTeX Project team and bug
%% reports for it can be opened at https://latex-project.org/bugs/
%% (but please observe conditions on bug reports sent to that address!)
%%
%%
%% Copyright (C) 1993-2020
%% The LaTeX3 Project and any individual authors listed elsewhere
%% in this file.
%%
%% This file was generated from file(s) of the Standard LaTeX ‘Tools Bundle’.
%% --------------------------------------------------------------------------
%%
%% It may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%% https://www.latex-project.org/lppl.txt
%% and version 1.3c or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This file may only be distributed together with a copy of the LaTeX
%% ‘Tools Bundle’. You may however distribute the LaTeX ‘Tools Bundle’
%% without such generated files.
%%
%% The list of all files belonging to the LaTeX ‘Tools Bundle’ is
%% given in the file ‘manifest.txt’.
%%
\message{File ignored}

\endinput
%%
%% End of file ‘.tex’.

19.3.3. Bottom Line

There are various situations in which R Markdown can be useful. It can simply be used to generate
a structured log for all analyses and results. It can also be used for short research papers. While I
can very well imagine a take-home assignment written in R Markdown, a Ph.D. thesis is likely to be
too complex. For more information on R Markdown, see http://rmarkdown.rstudio.com.

http://rmarkdown.rstudio.com


292 19. Carrying Out an Empirical Project

Figure 19.2. R Markdown examples: HTML output



19.4. Combining R with LaTeX 293

19.4. Combining R with LaTeX

If we need more typesetting power than R Markdown is capable of, we can resort to LATEX. It is
a powerful and free system for generating documents. In economics and other fields with a lot of
maths involved, it is widely used – in many areas, it is the de facto standard. It is also popular for
typesetting articles and books. This book is an example for a complex document created by LATEX.
At least basic knowledge of LATEX as well as a working installation is needed to follow this section.

We show how R and LATEX can be used jointly for convenient and automated document prepa-
ration. Several packages allow a direct translation of tables and other entities to LATEX code. We
have already seen the command stargazer for producing regression tables. So far, we have al-
ways used the option type="text" to generate directly readable results. With type="latex"
instead, stargazer will generate LATEX code for the table. For general tables, the command xtable
from package xtable provides a flexible generation of LATEX (and HTML) tables. Both are flexibly
customizable to produce tailored results. There are also other packages to generate LATEX output –
examples are memisc, texreg, and outreg.

Now we have to get the generated code into our LATEX file. Copy and paste from the console works
but isn’t the most elegant and fool-proof strategy. Here, we look into two other ones. First, we
present knitr in Section 19.4.1 which allows to combine R with LATEX code in one source document
in a way similar to R Markdown. Section 19.4.2 briefly describes an approach that keeps R and
LATEX code separate but still automatically includes the up-to-date version of R results in the output
document.

19.4.1. Automatic Document Generation using Sweave and knitr

The package Sweave implements a combination of LATEX and R code in one source file and is in this
sense similar to R Markdown. This file is first processed by R to generate a standard .tex file that
combines the LATEX part of the source file with the properly formatted results of the calculations,
tables and figures generated in R. This file can then be processed like any other standard LATEX file.
The package knitr can be seen as a successor. It works very much like Sweave but is somewhat
more flexible, convenient, and versatile. This section demonstrates basic usage of knitr.

A knitr file is a standard text file with the file name extension .Rnw. The basic “Ultimate
Question” document from above translated to a knitr file is the following:

File ultimate-calcs-knitr.Rnw
/Documents/R/URfIE/19/ultimate-calcs-knitr.Rnw"

%%
%% This is file ‘.tex’,
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% fileerr.dtx (with options: ‘return’)
%%
%% This is a generated file.
%%
%% The source is maintained by the LaTeX Project team and bug
%% reports for it can be opened at https://latex-project.org/bugs/
%% (but please observe conditions on bug reports sent to that address!)
%%
%%
%% Copyright (C) 1993-2020
%% The LaTeX3 Project and any individual authors listed elsewhere
%% in this file.



294 19. Carrying Out an Empirical Project

%%
%% This file was generated from file(s) of the Standard LaTeX ‘Tools Bundle’.
%% --------------------------------------------------------------------------
%%
%% It may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%% https://www.latex-project.org/lppl.txt
%% and version 1.3c or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This file may only be distributed together with a copy of the LaTeX
%% ‘Tools Bundle’. You may however distribute the LaTeX ‘Tools Bundle’
%% without such generated files.
%%
%% The list of all files belonging to the LaTeX ‘Tools Bundle’ is
%% given in the file ‘manifest.txt’.
%%
\message{File ignored}

\endinput
%%
%% End of file ‘.tex’.

The file contains standard LATEX code. It also includes an R code chunk which is started with <<>>=
and ended with @. This file is processed (“knitted”) by the knitr package using the command

knit("ultimate-calcs-knitr.Rnw")

to produce a pure LATEX file ultimate-calcs-knitr.tex. This file can in the next step be pro-
cessed using a standard LATEX installation. R can also call any command line / shell commands
appropriate for the operating system using the function shell("some OS command"). With a
working pdflatex command installed on the system, we can therefore produce a .pdf from a
.Rnw file with the R commands

knit("ultimate-calcs-knitr.Rnw")
shell("pdflatex ultimate-calcs-knitr.tex")

If we are using LATEX references and the like, pdflatex might have to be called repeatedly.
RStudio can be used to conveniently work with knitr including syntax highlighting for the LATEX

code. By default, RStudio is set to work with Sweave instead, at least at the time of writing this.
To use knitr, change the option Tools → Global Options → Sweave → Weave Rnw files
using from Sweave to knitr. Then we can produce a .pdf file from a .Rnw file with a click of a
“Compile PDF” button.

The R code chunks in a knitr can be customized with options by starting the chunk with
<<chunk-name, option 1, option 2, ...>>= to change the way the R results are displayed.
Important examples include

• echo=FALSE: Don’t print the R commands
• results="hide": Don’t print the R output
• results="asis": The results are LATEX code, for example generated by xtable or
stargazer.

• error=FALSE, warning=FALSE, message=FALSE: Don’t print any errors, warnings, or mes-
sages from R.



19.4. Combining R with LaTeX 295

• fig=TRUE,width=...,height=...: Include the generated figure with the respective width
and height (in inches).

We can also display in-line results from R with \Sexpr(...).



296 19. Carrying Out an Empirical Project

The following .Rnw file demonstrates some of these features. After running this file through knit
and pdflatex, the resulting PDF file is shown in Figure 19.3. For more details on knitr, see Xie
(2015).

File knitr-example.Rnw
/Documents/R/URfIE/19/knitr-example.Rnw"

%%
%% This is file ‘.tex’,
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% fileerr.dtx (with options: ‘return’)
%%
%% This is a generated file.
%%
%% The source is maintained by the LaTeX Project team and bug
%% reports for it can be opened at https://latex-project.org/bugs/
%% (but please observe conditions on bug reports sent to that address!)
%%
%%
%% Copyright (C) 1993-2020
%% The LaTeX3 Project and any individual authors listed elsewhere
%% in this file.
%%
%% This file was generated from file(s) of the Standard LaTeX ‘Tools Bundle’.
%% --------------------------------------------------------------------------
%%
%% It may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%% https://www.latex-project.org/lppl.txt
%% and version 1.3c or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This file may only be distributed together with a copy of the LaTeX
%% ‘Tools Bundle’. You may however distribute the LaTeX ‘Tools Bundle’
%% without such generated files.
%%
%% The list of all files belonging to the LaTeX ‘Tools Bundle’ is
%% given in the file ‘manifest.txt’.
%%
\message{File ignored}

\endinput
%%
%% End of file ‘.tex’.



19.4. Combining R with LaTeX 297

Figure 19.3. PDF Result from knitr-example.Rnw

A Demonstration of Using LATEX with R

Florian Heiss

March 30, 2017

Our data set has 141 observations. The distribution of gender is the following:

gender
female 67
male 74

Table 1 shows the regression results.

Table 1: Regression Results

Dependent variable:

colGPA

(1) (2) (3)

hsGPA 0.482∗∗∗ 0.453∗∗∗

(0.090) (0.096)

ACT 0.027∗∗ 0.009
(0.011) (0.011)

Constant 1.415∗∗∗ 2.403∗∗∗ 1.286∗∗∗

(0.307) (0.264) (0.341)

Observations 141 141 141
R2 0.172 0.043 0.176

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In model (1), β̂1 = 0.482. Finally, here is our regression graph:

2.5 3.0 3.5 4.0

2.
5

3.
5



298 19. Carrying Out an Empirical Project

19.4.2. Separating R and LATEX code

When working with knitr or Sweave, the calculations in R are performed whenever the document
is “knitted” to a .tex file. In this way, we make sure that the resulting document is always up-to-
date and the source file contains all R code for maximum transparency. This can also be a drawback:
If the calculations in R are time-consuming, we typically don’t want to repeat them over and over
again whenever we want to typeset the document because of a small change in the text.

Here, we look at a simple approach to separate the calculations in R from the LATEX code. At the
same time we want R to automatically change tables, figures, and even number in the text whenever
we rerun the calculations. In Section 1.4.5, we have already discussed the automated generation and
export of graphs. For use in combination with pdflatex, PDF files work best since they are scaled
without any problems. In other setups, EPS or PNG files work well. In a similar way, we create
tables and store them as text files. We can even write single numbers into text files. We already
know that a straightforward way to write text into a file is sink. In the LATEX document, we simply
include the graphics in a standard way and use \input{...} commands to add tables, numbers,
and other results to the appropriate place.

Let’s replicate the knitr example that generated Figure 19.3 using this approach. The following
R code does all calculations and stores the results in the test files numb-n.txt, tab-gender.txt,
tab-regr.txt, and numb-b1.txt, as well as the graphics file regr-graph.pdf:

Script 19.3: LaTeXwithR.R
library(stargazer);library(xtable)
data(gpa1, package=’wooldridge’)

# Number of obs.
sink("numb-n.txt"); cat(nrow(gpa1)); sink()
# generate frequency table in file "tab-gender.txt"
gender <- factor(gpa1$male,labels=c("female","male"))
sink("tab-gender.txt")
xtable( table(gender) )
sink()

# calculate OLS results
res1 <- lm(colGPA ~ hsGPA , data=gpa1)
res2 <- lm(colGPA ~ ACT, data=gpa1)
res3 <- lm(colGPA ~ hsGPA + ACT, data=gpa1)

# write regression table to file "tab-regr.txt"
sink("tab-regr.txt")
stargazer(res1,res2,res3, keep.stat=c("n","rsq"),

type="latex",title="Regression Results",label="t:reg")
sink()

# b1 hat
sink("numb-b1.txt"); cat(round(coef(res1)[2],3)); sink()

# Generate graph as PDF file
pdf(file = "regr-graph.pdf", width = 3, height = 2)
par(mar=c(2,2,1,1))
plot(gpa1$hsGPA, gpa1$colGPA)
abline(res1)
dev.off()



19.4. Combining R with LaTeX 299

After this script was run, the four text files have the following content:2

File numb-n.txt
141

File numb-b1.txt
0.482

File tab-gender.txt
% latex table generated in R 4.0.0 by xtable 1.8-4 package
% Mon May 18 16:31:00 2020
\begin{table}[ht]
\centering
\begin{tabular}{rr}

\hline
& gender \\
\hline

female & 67 \\
male & 74 \\
\hline

\end{tabular}
\end{table}

File tab-regr.txt

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University.
% E-mail: hlavac at fas.harvard.edu
% Date and time: Mon, May 18, 2020 - 4:25:47 PM
\begin{table}[!htbp] \centering

\caption{Regression Results}
\label{t:reg}

\begin{tabular}{@{\extracolsep{5pt}}lccc}
\\[-1.8ex]\hline
\hline \\[-1.8ex]
& \multicolumn{3}{c}{\textit{Dependent variable:}} \\

\cline{2-4}
\\[-1.8ex] & \multicolumn{3}{c}{colGPA} \\
\\[-1.8ex] & (1) & (2) & (3)\\
\hline \\[-1.8ex]
hsGPA & 0.482$^{***}$ & & 0.453$^{***}$ \\
& (0.090) & & (0.096) \\
& & & \\

ACT & & 0.027$^{**}$ & 0.009 \\
& & (0.011) & (0.011) \\
& & & \\

Constant & 1.415$^{***}$ & 2.403$^{***}$ & 1.286$^{***}$ \\
& (0.307) & (0.264) & (0.341) \\
& & & \\

\hline \\[-1.8ex]
Observations & 141 & 141 & 141 \\
R$^{2}$ & 0.172 & 0.043 & 0.176 \\
\hline
\hline \\[-1.8ex]
\textit{Note:} & \multicolumn{3}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05;
$^{***}$p$<$0.01} \\
\end{tabular}
\end{table}

2Make sure to use setwd first to choose the correct directory where we want to store the results.



300 19. Carrying Out an Empirical Project

Now we write a LATEX file with the appropriate \input{...} commands to put tables and num-
bers into the right place. A file that generates the same document as the one in Figure 19.3 is the
following:

File LaTeXwithR.tex
/Documents/R/URfIE/19/LaTeXwithR.tex"

%%
%% This is file ‘.tex’,
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% fileerr.dtx (with options: ‘return’)
%%
%% This is a generated file.
%%
%% The source is maintained by the LaTeX Project team and bug
%% reports for it can be opened at https://latex-project.org/bugs/
%% (but please observe conditions on bug reports sent to that address!)
%%
%%
%% Copyright (C) 1993-2020
%% The LaTeX3 Project and any individual authors listed elsewhere
%% in this file.
%%
%% This file was generated from file(s) of the Standard LaTeX ‘Tools Bundle’.
%% --------------------------------------------------------------------------
%%
%% It may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%% https://www.latex-project.org/lppl.txt
%% and version 1.3c or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This file may only be distributed together with a copy of the LaTeX
%% ‘Tools Bundle’. You may however distribute the LaTeX ‘Tools Bundle’
%% without such generated files.
%%
%% The list of all files belonging to the LaTeX ‘Tools Bundle’ is
%% given in the file ‘manifest.txt’.
%%
\message{File ignored}

\endinput
%%
%% End of file ‘.tex’.

Whenever we update the calculations, we rerun the R script and create updated tables, numbers,
and graphs. Whenever we update the text in our document, LATEX will use the latest version of the
results to generate a publication-ready PDF document.

We have automatically generated exactly the same PDF document in two different ways in this
and the previous section. Which one is better? It depends. In smaller projects with little and fast R
computations, knitr is convenient because it combines everything in one file. This is also the ideal
in terms of reproducibility. For larger projects with many or time-consuming R calculations, it is
more convenient to separate calculations from the text, since knitr requires to redo all calculations



19.4. Combining R with LaTeX 301

whenever we compile the LATEX code. This book was done in the separated spirit described in this
section.





Part IV.

Appendices





R Scripts

1. Scripts Used in Chapter 01
Script 1.1: R-as-a-Calculator.R

1+1
5*(4-1)^2
sqrt( log(10) )

Script 1.2: Install-Packages.R
# This R script downloads and installs all packages used at some point.
# It needs to be run once for each computer/user only

install.packages( c("AER", "car", "censReg", "dplyr", "dummies", "dynlm",
"effects", "ggplot2", "lmtest", "maps", "mfx", "orcutt", "plm",
"quantmod", "sandwich", "quantreg", "rio", "rmarkdown", "sampleSelection",
"stargazer", "survival", "systemfit", "truncreg", "tseries", "urca",
"xtable", "vars", "WDI", "wooldridge", "xts", "zoo") )

Script 1.3: Objects.R
# generate object x (no output):
x <- 5

# display x & x^2:
x
x^2

# generate objects y&z with immediate display using ():
(y <- 3)
(z <- y^x)

Script 1.4: Vectors.R
# Define a with immediate output through parantheses:
(a <- c(1,2,3,4,5,6))
(b <- a+1)
(c <- a+b)
(d <- b*c)
sqrt(d)

Script 1.5: Vector-Functions.R
# Define vector
(a <- c(7,2,6,9,4,1,3))

# Basic functions:
sort(a)
length(a)
min(a)
max(a)
sum(a)



306 R Scripts

prod(a)

# Creating special vectors:
numeric(20)
rep(1,20)
seq(50)
5:15
seq(4,20,2)

Script 1.6: Logical.R
# Basic comparisons:
0 == 1
0 < 1

# Logical vectors:
( a <- c(7,2,6,9,4,1,3) )

( b <- a<3 | a>=6 )

Script 1.7: Factors.R
# Original ratings:
x <- c(3,2,2,3,1,2,3,2,1,2)
xf <- factor(x, labels=c("bad","okay","good"))
x
xf

Script 1.8: Vector-Indices.R
# Create a vector "avgs":
avgs <- c(.366, .358, .356, .349, .346)

# Create a string vector of names:
players <- c("Cobb","Hornsby","Jackson","O’Doul","Delahanty")

# Assign names to vector and display vector:
names(avgs) <- players
avgs

# Indices by number:
avgs[2]
avgs[1:4]

# Indices by name:
avgs["Jackson"]

# Logical indices:
avgs[ avgs>=0.35 ]

Script 1.9: Matrices.R
# Generating matrix A from one vector with all values:
v <- c(2,-4,-1,5,7,0)
( A <- matrix(v,nrow=2) )

# Generating matrix A from two vectors corresponding to rows:
row1 <- c(2,-1,7); row2 <- c(-4,5,0)
( A <- rbind(row1, row2) )

# Generating matrix A from three vectors corresponding to columns:



1. Scripts Used in Chapter 01 307

col1 <- c(2,-4); col2 <- c(-1,5); col3 <- c(7,0)
( A <- cbind(col1, col2, col3) )

# Giving names to rows and columns:
colnames(A) <- c("Alpha","Beta","Gamma")
rownames(A) <- c("Aleph","Bet")
A

# Diaginal and identity matrices:
diag( c(4,2,6) )
diag( 3 )

# Indexing for extracting elements (still using A from above):
A[2,1]
A[,2]
A[,c(1,3)]

Script 1.10: Matrix-Operators.R
A <- matrix( c(2,-4,-1,5,7,0), nrow=2)
B <- matrix( c(2,1,0,3,-1,5), nrow=2)
A
B
A*B

# Transpose:
(C <- t(B) )

# Matrix multiplication:
(D <- A %*% C )

# Inverse:
solve(D)

Script 1.11: Lists.R
# Generate a list object:
mylist <- list( A=seq(8,36,4), this="that", idm = diag(3))

# Print whole list:
mylist

# Vector of names:
names(mylist)

# Print component "A":
mylist$A

Script 1.12: Data-frames.R
# Define one x vector for all:
year <- c(2008,2009,2010,2011,2012,2013)
# Define a matrix of y values:
product1<-c(0,3,6,9,7,8); product2<-c(1,2,3,5,9,6); product3<-c(2,4,4,2,3,2)
sales_mat <- cbind(product1,product2,product3)
rownames(sales_mat) <- year
# The matrix looks like this:
sales_mat

# Create a data frame and display it:



308 R Scripts

sales <- as.data.frame(sales_mat)
sales

Script 1.13: Data-frames-vars.R
# Accessing a single variable:
sales$product2

# Generating a new variable in the data frame:
sales$totalv1 <- sales$product1 + sales$product2 + sales$product3

# The same but using "with":
sales$totalv2 <- with(sales, product1+product2+product3)

# The same but using "attach":
attach(sales)
sales$totalv3 <- product1+product2+product3
detach(sales)

# Result:
sales

Script 1.14: Data-frames-subsets.R
# Full data frame (from Data-frames.R, has to be run first)
sales

# Subset: all years in which sales of product 3 were >=3
subset(sales, product3>=3)

Script 1.15: RData-Example.R
# Note: "sales" is defined in Data-frames.R, so it has to be run first!
# save data frame as RData file (in the current working directory)
save(sales, file = "oursalesdata.RData")

# remove data frame "sales" from memory
rm(sales)

# Does variable "sales" exist?
exists("sales")

# Load data set (in the current working directory):
load("oursalesdata.RData")

# Does variable "sales" exist?
exists("sales")

sales

# averages of the variables:
colMeans(sales)

Script 1.16: Example-Data.R
# The data set is stored on the local computer in
# ~/Documents/R/data/wooldridge/affairs.dta

# Version 1: from package. make sure to install.packages(wooldridge)
data(affairs, package=’wooldridge’)



1. Scripts Used in Chapter 01 309

# Version 2: Adjust path
affairs2 <- rio::import("~/Documents/R/data/wooldridge/affairs.dta")

# Version 3: Change working directory
setwd("~/Documents/R/data/wooldridge/")
affairs3 <- rio::import("affairs.dta")

# Version 4: directly load from internet
affairs4 <- rio::import("http://fmwww.bc.edu/ec-p/data/wooldridge/affairs.dta")

# Compare, e.g. avg. value of naffairs:
mean(affairs$naffairs)
mean(affairs2$naffairs)
mean(affairs3$naffairs)
mean(affairs4$naffairs)

Script 1.17: Plot-Overlays.R
plot(x,y, main="Example for an Outlier")
points(8,1)
abline(a=0.31,b=0.97,lty=2,lwd=2)
text(7,2,"outlier",pos=3)
arrows(7,2,8,1,length=0.15)

Script 1.18: Plot-Matplot.R
# Define one x vector for all:
year <- c(2008,2009,2010,2011,2012,2013)
# Define a matrix of y values:
product1 <- c(0,3,6,9,7,8)
product2 <- c(1,2,3,5,9,6)
product3 <- c(2,4,4,2,3,2)
sales <- cbind(product1,product2,product3)
# plot
matplot(year,sales, type="b", lwd=c(1,2,3), col="black" )

Script 1.19: Plot-Legend.R
curve( dnorm(x,0,1), -10, 10, lwd=1, lty=1)
curve( dnorm(x,0,2),add=TRUE, lwd=2, lty=2)
curve( dnorm(x,0,3),add=TRUE, lwd=3, lty=3)
# Add the legend
legend("topright",c("sigma=1","sigma=2","sigma=3"), lwd=1:3, lty=1:3)

Script 1.20: Plot-Legend2.R
curve( dnorm(x,0,1), -10, 10, lwd=1, lty=1)
curve( dnorm(x,0,2),add=TRUE, lwd=2, lty=2)
curve( dnorm(x,0,3),add=TRUE, lwd=3, lty=3)
# Add the legend with greek sigma
legend("topleft",expression(sigma==1,sigma==2,sigma==3),lwd=1:3,lty=1:3)
# Add the text with the formula, centered at x=6 and y=0.3
text(6,.3,

expression(f(x)==frac(1,sqrt(2*pi)*sigma)*e^{-frac(x^2,2*sigma^2)}))

Script 1.21: mpg-data.R
# load package
library(ggplot2)

# First rows of data of data set mpg:
head(mpg)



310 R Scripts

Script 1.22: mpg-scatter.R
# load package
library(ggplot2)

# Generate ggplot2 graph:
ggplot() + geom_point( data=mpg, mapping=aes(x=displ, y=hwy) )

Script 1.23: mpg-regr.R
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth()

Script 1.24: mpg-color1.R
ggplot(mpg, aes(displ, hwy)) +
geom_point(color=gray(0.5)) +
geom_smooth(color="black")

Script 1.25: mpg-color2.R
ggplot(mpg, aes(displ, hwy)) +
geom_point( aes(color=class) ) +
geom_smooth(color="black") +
scale_color_grey()

Script 1.26: mpg-color3.R
ggplot(mpg, aes(displ, hwy)) +
geom_point( aes(color=class, shape=class) ) +
geom_smooth(color="black") +
scale_color_grey() +
scale_shape_manual(values=1:7)

Script 1.27: mpg-color4.R
ggplot(mpg, aes(displ, hwy, color=class, shape=class)) +
geom_point() +
geom_smooth(se=FALSE) +
scale_color_grey() +
scale_shape_manual(values=1:7)

Script 1.28: mpg-advanced.R
ggplot(mpg, aes(displ, hwy, color=class, shape=class)) +
geom_point() +
geom_smooth(se=FALSE) +
scale_color_grey() +
scale_shape_manual(values=1:7) +
theme_light() +
labs(title="Displacement vs. Mileage",

subtitle="Model years 1988 - 2008",
caption="Source: EPA through the ggplot2 package",
x = "Displacement [liters]",
y = "Miles/Gallon (Highway)",
color="Car type",
shape="Car type"
) +

coord_cartesian(xlim=c(0,7), ylim=c(0,45)) +
theme(legend.position = c(0.15, 0.3))

ggsave("my_ggplot.png", width = 7, height = 5)



1. Scripts Used in Chapter 01 311

Script 1.29: wdi-data.R
# packages: WDI for raw data, dplyr for manipulation
library(WDI);

wdi_raw <- WDI(indicator=c("SP.DYN.LE00.FE.IN"), start = 1960, end = 2014)

head(wdi_raw)
tail(wdi_raw)

Script 1.30: wdi-manipulation.R
library(dplyr)

# filter: only US data
ourdata <- filter(wdi_raw, iso2c=="US")
# rename lifeexpectancy variable
ourdata <- rename(ourdata, LE_fem=SP.DYN.LE00.FE.IN)
# select relevant variables
ourdata <- select(ourdata, year, LE_fem)
# order by year (increasing)
ourdata <- arrange(ourdata, year)

# Head and tail of data
head(ourdata)
tail(ourdata)

# Graph
library(ggplot2)
ggplot(ourdata, aes(year, LE_fem)) +

geom_line() +
theme_light() +
labs(title="Life expectancy of females in the US",

subtitle="World Bank: World Development Indicators",
x = "Year",
y = "Life expectancy [years]"
)

Script 1.31: wdi-pipes.R
library(dplyr)
# All manipulations with pipes:
ourdata <- wdi_raw %>%

filter(iso2c=="US") %>%
rename(LE_fem=SP.DYN.LE00.FE.IN) %>%
select(year, LE_fem) %>%
arrange(year)

Script 1.32: wdi-ctryinfo.R
library(WDI); library(dplyr)

# Download raw life expectency data
le_data <- WDI(indicator=c("SP.DYN.LE00.FE.IN"), start = 1960, end = 2014) %>%

rename(LE = SP.DYN.LE00.FE.IN)

tail(le_data)

# Country-data on income classification
ctryinfo <- as.data.frame(WDI_data$country, stringsAsFactors = FALSE) %>%

select(country, income)



312 R Scripts

tail(ctryinfo)

# Join:
alldata <- left_join(le_data, ctryinfo)

tail(alldata)

Script 1.33: wdi-ctryavg.R
# Note: run wdi-ctryinfo.R first to define "alldata"!

# Summarize by country and year
avgdata <- alldata %>%
filter(income != "Aggregates") %>% # remove rows for aggregates
filter(income != "Not classified") %>% # remove unclassified ctries
group_by(income, year) %>% # group by income classification
summarize(LE_avg = mean(LE, na.rm=TRUE)) %>% # average by group
ungroup() # remove grouping

# First 6 rows:
tail(avgdata)

# plot
ggplot(avgdata, aes(year, LE_avg, color=income)) +
geom_line() +
scale_color_grey()

Script 1.34: wdi-ctryavg-beautify.R
# Note: run wdi-ctryavg.R first to define "avgdata"!

# Order the levels meaningfully
avgdata$income <- factor( avgdata$income,

levels = c("High income",
"Upper middle income",
"Lower middle income",
"Low income") )

# Plot
ggplot(avgdata, aes(year, LE_avg, color=income)) +
geom_line(size=1) + # thicker lines
scale_color_grey() + # gray scale
scale_x_continuous(breaks=seq(1960,2015,10)) + # adjust x axis breaks
theme_light() + # light theme (white background,...)
labs(title="Life expectancy of women",

subtitle="Average by country classification",
x="Year", y="Life expectancy [Years]",
color="Income level",
caption="Source: World Bank, WDI")

Script 1.35: Descr-Tables.R
# load data set

data(affairs, package=’wooldridge’)

# Generate "Factors" to attach labels
haskids <- factor(affairs$kids,labels=c("no","yes"))
mlab <- c("very unhappy","unhappy","average","happy", "very happy")
marriage <- factor(affairs$ratemarr, labels=mlab)



1. Scripts Used in Chapter 01 313

# Frequencies for having kids:
table(haskids)
# Marriage ratings (share):
prop.table(table(marriage))

# Contigency table: counts (display & store in var.)
(countstab <- table(marriage,haskids))

# Share within "marriage" (i.e. within a row):
prop.table(countstab, margin=1)
# Share within "haskids" (i.e. within a column):
prop.table(countstab, margin=2)

Script 1.36: Histogram.R
# Load data
data(ceosal1, package=’wooldridge’)

# Extract ROE to single vector
ROE <- ceosal1$roe

# Subfigure (a): histogram (counts)
hist(ROE)

# Subfigure (b): histogram (densities, explicit breaks)
hist(ROE, breaks=c(0,5,10,20,30,60) )

Script 1.37: KDensity.R
# Subfigure (c): kernel density estimate
plot( density(ROE) )

# Subfigure (d): overlay
hist(ROE, freq=FALSE, ylim=c(0,.07))
lines( density(ROE), lwd=3 )

Script 1.38: Descr-Stats.R

data(ceosal1, package=’wooldridge’)

# sample average:
mean(ceosal1$salary)
# sample median:
median(ceosal1$salary)
#standard deviation:
sd(ceosal1$salary)
# summary information:
summary(ceosal1$salary)

# correlation with ROE:
cor(ceosal1$salary, ceosal1$roe)

Script 1.39: PMF-example.R
# Values for x: all between 0 and 10
x <- seq(0,10)

# pmf for all these values



314 R Scripts

fx <- dbinom(x, 10, 0.2)

# Table(matrix) of values:
cbind(x, fx)
# Plot
plot(x, fx, type="h")

Script 1.40: Random-Numbers.R
# Sample from a standard normal RV with sample size n=5:
rnorm(5)
# A different sample from the same distribution:
rnorm(5)

# Set the seed of the random number generator and take two samples:
set.seed(6254137)
rnorm(5)
rnorm(5)

# Reset the seed to the same value to get the same samples again:
set.seed(6254137)
rnorm(5)
rnorm(5)

Script 1.41: Example-C-2.R
# Manually enter raw data from Wooldridge, Table C.3:
SR87<-c(10,1,6,.45,1.25,1.3,1.06,3,8.18,1.67,.98,1,.45,

5.03,8,9,18,.28,7,3.97)
SR88<-c(3,1,5,.5,1.54,1.5,.8,2,.67,1.17,.51,.5,.61,6.7,

4,7,19,.2,5,3.83)
# Calculate Change (the parentheses just display the results):
(Change <- SR88 - SR87)

# Ingredients to CI formula
(avgCh<- mean(Change))
(n <- length(Change))
(sdCh <- sd(Change))
(se <- sdCh/sqrt(n))
(c <- qt(.975, n-1))

# Confidence interval:
c( avgCh - c*se, avgCh + c*se )

Script 1.42: Example-C-3.R

data(audit, package=’wooldridge’)

# Ingredients to CI formula
(avgy<- mean(audit$y))
(n <- length(audit$y))
(sdy <- sd(audit$y))
(se <- sdy/sqrt(n))
(c <- qnorm(.975))

# 95% Confidence interval:
avgy + c * c(-se,+se)
# 99% Confidence interval:
avgy + qnorm(.995) * c(-se,+se)



1. Scripts Used in Chapter 01 315

Script 1.43: Critical-Values-t.R
# degrees of freedom = n-1:
df <- 19
# significance levels:
alpha.one.tailed = c(0.1, 0.05, 0.025, 0.01, 0.005, .001)
alpha.two.tailed = alpha.one.tailed * 2

# critical values & table:
CV <- qt(1 - alpha.one.tailed, df)
cbind(alpha.one.tailed, alpha.two.tailed, CV)

Script 1.44: Example-C-5.R
# Note: we reuse variables from Example-C-3.R. It has to be run first!
# t statistic for H0: mu=0:
(t <- avgy/se)

# Critical values for t distribution with n-1=240 d.f.:
alpha.one.tailed = c(0.1, 0.05, 0.025, 0.01, 0.005, .001)
CV <- qt(1 - alpha.one.tailed, n-1)
cbind(alpha.one.tailed, CV)

Script 1.45: Example-C-6.R
# Note: we reuse variables from Example-C-2.R. It has to be run first!
# t statistic for H0: mu=0:
(t <- avgCh/se)

# p value
(p <- pt(t,n-1))

Script 1.46: Example-C-7.R
# t statistic for H0: mu=0:
t <- -4.276816

# p value
(p <- pt(t,240))

Script 1.47: Examples-C2-C6.R
# data for the scrap rates examples:
SR87<-c(10,1,6,.45,1.25,1.3,1.06,3,8.18,1.67,.98,1,.45,5.03,8,9,18,.28,

7,3.97)
SR88<-c(3,1,5,.5,1.54,1.5,.8,2,.67,1.17,.51,.5,.61,6.7,4,7,19,.2,5,3.83)
Change <- SR88 - SR87

# Example C.2: two-sided CI
t.test(Change)
# Example C.6: 1-sided test:
t.test(Change, alternative="less")

Script 1.48: Examples-C3-C5-C7.R

data(audit, package=’wooldridge’)

# Example C.3: two-sided CI
t.test(audit$y)
# Examples C.5 & C.7: 1-sided test:
t.test(audit$y, alternative="less")



316 R Scripts

Script 1.49: Test-Results-List.R

data(audit, package=’wooldridge’)

# store test results as a list "testres"
testres <- t.test(audit$y)

# print results:
testres

# component names: which results can be accessed?
names(testres)

# p-value
testres$p.value

Script 1.50: Simulate-Estimate.R
# Set the random seed
set.seed(123456)

# Draw a sample given the population parameters
sample <- rnorm(100,10,2)

# Estimate the population mean with the sample average
mean(sample)

# Draw a different sample and estimate again:
sample <- rnorm(100,10,2)
mean(sample)

# Draw a third sample and estimate again:
sample <- rnorm(100,10,2)
mean(sample)

Script 1.51: Simulation-Repeated.R
# Set the random seed
set.seed(123456)

# initialize ybar to a vector of length r=10000 to later store results:
r <- 10000
ybar <- numeric(r)

# repeat r times:
for(j in 1:r) {
# Draw a sample and store the sample mean in pos. j=1,2,... of ybar:
sample <- rnorm(100,10,2)
ybar[j] <- mean(sample)

}

Script 1.52: Simulation-Repeated-Results.R
# The first 20 of 10000 estimates:
ybar[1:20]

# Simulated mean:
mean(ybar)

# Simulated variance:



2. Scripts Used in Chapter 02 317

var(ybar)

# Simulated density:
plot(density(ybar))
curve( dnorm(x,10,sqrt(.04)), add=TRUE,lty=2)

Script 1.53: Simulation-Inference.R
# Set the random seed
set.seed(123456)

# initialize vectors to later store results:
r <- 10000
CIlower <- numeric(r); CIupper <- numeric(r)
pvalue1 <- numeric(r); pvalue2 <- numeric(r)

# repeat r times:
for(j in 1:r) {

# Draw a sample
sample <- rnorm(100,10,2)
# test the (correct) null hypothesis mu=10:
testres1 <- t.test(sample,mu=10)
# store CI & p value:
CIlower[j] <- testres1$conf.int[1]
CIupper[j] <- testres1$conf.int[2]
pvalue1[j] <- testres1$p.value
# test the (incorrect) null hypothesis mu=9.5 & store the p value:
pvalue2[j] <- t.test(sample,mu=9.5)$p.value

}

# Test results as logical value
reject1<-pvalue1<=0.05; reject2<-pvalue2<=0.05
table(reject1)
table(reject2)

Script 1.54: Simulation-Inference-Figure.R
# Needs Simulation-Inference.R to be run first
# color vector:
color <- rep(gray(.5),100)
color[reject1[1:100]] <- "black"

# Prepare empty plot with correct axis limits & labels:
plot(0, xlim=c(9,11), ylim=c(1,100),

ylab="Sample No.", xlab="", main="Correct H0")
# Vertical line at 10:
abline(v=10, lty=2)
# Add the 100 first CIs (y is equal to j for both points):
for(j in 1:100) {

lines(c(CIlower[j],CIupper[j]),c(j,j),col=color[j],lwd=2)
}

2. Scripts Used in Chapter 02
Script 2.1: Example-2-3.R

data(ceosal1, package=’wooldridge’)
attach(ceosal1)



318 R Scripts

# ingredients to the OLS formulas
cov(roe,salary)
var(roe)
mean(salary)
mean(roe)

# manual calculation of OLS coefficients
( b1hat <- cov(roe,salary)/var(roe) )
( b0hat <- mean(salary) - b1hat*mean(roe) )

# "detach" the data frame
detach(ceosal1)

Script 2.2: Example-2-3-2.R
data(ceosal1, package=’wooldridge’)

# OLS regression
lm( salary ~ roe, data=ceosal1 )

Script 2.3: Example-2-3-3.R
data(ceosal1, package=’wooldridge’)

# OLS regression
CEOregres <- lm( salary ~ roe, data=ceosal1 )

# Scatter plot (restrict y axis limits)
with(ceosal1, plot(roe, salary, ylim=c(0,4000)))

# Add OLS regression line
abline(CEOregres)

Script 2.4: Example-2-4.R
data(wage1, package=’wooldridge’)

# OLS regression:
lm(wage ~ educ, data=wage1)

Script 2.5: Example-2-5.R
data(vote1, package=’wooldridge’)

# OLS regression (parentheses for immediate output):
( VOTEres <- lm(voteA ~ shareA, data=vote1) )

# scatter plot with regression line:
with(vote1, plot(shareA, voteA))
abline(VOTEres)

Script 2.6: Example-2-6.R
data(ceosal1, package=’wooldridge’)

# extract variables as vectors:
sal <- ceosal1$salary
roe <- ceosal1$roe

# regression with vectors:



2. Scripts Used in Chapter 02 319

CEOregres <- lm( sal ~ roe )

# obtain predicted values and residuals
sal.hat <- fitted(CEOregres)
u.hat <- resid(CEOregres)

# Wooldridge, Table 2.2:
cbind(roe, sal, sal.hat, u.hat)[1:15,]

Script 2.7: Example-2-7.R
data(wage1, package=’wooldridge’)

WAGEregres <- lm(wage ~ educ, data=wage1)

# obtain coefficients, predicted values and residuals
b.hat <- coef(WAGEregres)
wage.hat <- fitted(WAGEregres)
u.hat <- resid(WAGEregres)

# Confirm property (1):
mean(u.hat)

# Confirm property (2):
cor(wage1$educ , u.hat)

# Confirm property (3):
mean(wage1$wage)
b.hat[1] + b.hat[2] * mean(wage1$educ)

Script 2.8: Example-2-8.R
data(ceosal1, package=’wooldridge’)

CEOregres <- lm( salary ~ roe, data=ceosal1 )

# Calculate predicted values & residuals:
sal.hat <- fitted(CEOregres)
u.hat <- resid(CEOregres)

# Calculate R^2 in three different ways:
sal <- ceosal1$salary
var(sal.hat) / var(sal)
1 - var(u.hat) / var(sal)
cor(sal, sal.hat)^2

Script 2.9: Example-2-9.R
data(vote1, package=’wooldridge’)

VOTEres <- lm(voteA ~ shareA, data=vote1)

# Summary of the regression results
summary(VOTEres)

# Calculate R^2 manually:
var( fitted(VOTEres) ) / var( vote1$voteA )



320 R Scripts

Script 2.10: Example-2-10.R
data(wage1, package=’wooldridge’)

# Estimate log-level model
lm( log(wage) ~ educ, data=wage1 )

Script 2.11: Example-2-11.R
data(ceosal1, package=’wooldridge’)

# Estimate log-log model
lm( log(salary) ~ log(sales), data=ceosal1 )

Script 2.12: SLR-Origin-Const.R
data(ceosal1, package=’wooldridge’)

# Usual OLS regression:
(reg1 <- lm( salary ~ roe, data=ceosal1))

# Regression without intercept (through origin):
(reg2 <- lm( salary ~ 0 + roe, data=ceosal1))

# Regression without slope (on a constant):
(reg3 <- lm( salary ~ 1 , data=ceosal1))

# average y:
mean(ceosal1$salary)

# Scatter Plot with all 3 regression lines
plot(ceosal1$roe, ceosal1$salary, ylim=c(0,4000))
abline(reg1, lwd=2, lty=1)
abline(reg2, lwd=2, lty=2)
abline(reg3, lwd=2, lty=3)
legend("topleft",c("full","through origin","const only"),lwd=2,lty=1:3)

Script 2.13: Example-2-12.R
data(meap93, package=’wooldridge’)

# Estimate the model and save the results as "results"
results <- lm(math10 ~ lnchprg, data=meap93)

# Number of obs.
( n <- nobs(results) )
# SER:
(SER <- sd(resid(results)) * sqrt((n-1)/(n-2)) )
# SE of b0hat & b1hat, respectively:
SER / sd(meap93$lnchprg) / sqrt(n-1) * sqrt(mean(meap93$lnchprg^2))
SER / sd(meap93$lnchprg) / sqrt(n-1)

# Automatic calculations:
summary(results)

Script 2.14: SLR-Sim-Sample.R
# Set the random seed
set.seed(1234567)

# set sample size
n<-1000



2. Scripts Used in Chapter 02 321

# set true parameters: betas and sd of u
b0<-1; b1<-0.5; su<-2

# Draw a sample of size n:
x <- rnorm(n,4,1)
u <- rnorm(n,0,su)
y <- b0 + b1*x + u

# estimate parameters by OLS
(olsres <- lm(y~x))

# features of the sample for the variance formula:
mean(x^2)
sum((x-mean(x))^2)

# Graph
plot(x, y, col="gray", xlim=c(0,8) )
abline(b0,b1,lwd=2)
abline(olsres,col="gray",lwd=2)
legend("topleft",c("pop. regr. fct.","OLS regr. fct."),

lwd=2,col=c("black","gray"))

Script 2.15: SLR-Sim-Model.R
# Set the random seed
set.seed(1234567)

# set sample size and number of simulations
n<-1000; r<-10000

# set true parameters: betas and sd of u
b0<-1; b1<-0.5; su<-2

# initialize b0hat and b1hat to store results later:
b0hat <- numeric(r)
b1hat <- numeric(r)

# repeat r times:
for(j in 1:r) {

# Draw a sample of size n:
x <- rnorm(n,4,1)
u <- rnorm(n,0,su)
y <- b0 + b1*x + u

# estimate parameters by OLS and store them in the vectors
bhat <- coefficients( lm(y~x) )
b0hat[j] <- bhat["(Intercept)"]
b1hat[j] <- bhat["x"]

}

Script 2.16: SLR-Sim-Model-Condx.R
# Set the random seed
set.seed(1234567)

# set sample size and number of simulations
n<-1000; r<-10000

# set true parameters: betas and sd of u



322 R Scripts

b0<-1; b1<-0.5; su<-2

# initialize b0hat and b1hat to store results later:
b0hat <- numeric(r)
b1hat <- numeric(r)

# Draw a sample of x, fixed over replications:
x <- rnorm(n,4,1)

# repeat r times:
for(j in 1:r) {
# Draw a sample of y:
u <- rnorm(n,0,su)
y <- b0 + b1*x + u

# estimate parameters by OLS and store them in the vectors
bhat <- coefficients( lm(y~x) )
b0hat[j] <- bhat["(Intercept)"]
b1hat[j] <- bhat["x"]

}

Script 2.17: SLR-Sim-Results.R
# MC estimate of the expected values:
mean(b0hat)
mean(b1hat)

# MC estimate of the variances:
var(b0hat)
var(b1hat)

# Initialize empty plot
plot( NULL, xlim=c(0,8), ylim=c(0,6), xlab="x", ylab="y")
# add OLS regression lines
for (j in 1:10) abline(b0hat[j],b1hat[j],col="gray")
# add population regression line
abline(b0,b1,lwd=2)
# add legend
legend("topleft",c("Population","OLS regressions"),

lwd=c(2,1),col=c("black","gray"))

Script 2.18: SLR-Sim-ViolSLR4.R
# Set the random seed
set.seed(1234567)

# set sample size and number of simulations
n<-1000; r<-10000

# set true parameters: betas and sd of u
b0<-1; b1<-0.5; su<-2

# initialize b0hat and b1hat to store results later:
b0hat <- numeric(r)
b1hat <- numeric(r)

# Draw a sample of x, fixed over replications:
x <- rnorm(n,4,1)

# repeat r times:



2. Scripts Used in Chapter 02 323

for(j in 1:r) {
# Draw a sample of y:
u <- rnorm(n, (x-4)/5, su)
y <- b0 + b1*x + u

# estimate parameters by OLS and store them in the vectors
bhat <- coefficients( lm(y~x) )
b0hat[j] <- bhat["(Intercept)"]
b1hat[j] <- bhat["x"]

}

Script 2.19: SLR-Sim-Results-ViolSLR4.R
# MC estimate of the expected values:
mean(b0hat)
mean(b1hat)

# MC estimate of the variances:
var(b0hat)
var(b1hat)

Script 2.20: SLR-Sim-ViolSLR5.R
# Set the random seed
set.seed(1234567)

# set sample size and number of simulations
n<-1000; r<-10000

# set true parameters: betas and sd of u
b0<-1; b1<-0.5; su<-2

# initialize b0hat and b1hat to store results later:
b0hat <- numeric(r)
b1hat <- numeric(r)

# Draw a sample of x, fixed over replications:
x <- rnorm(n,4,1)

# repeat r times:
for(j in 1:r) {

# Draw a sample of y:
varu <- 4/exp(4.5) * exp(x)
u <- rnorm(n, 0, sqrt(varu) )
y <- b0 + b1*x + u

# estimate parameters by OLS and store them in the vectors
bhat <- coefficients( lm(y~x) )
b0hat[j] <- bhat["(Intercept)"]
b1hat[j] <- bhat["x"]

}

Script 2.21: SLR-Sim-Results-ViolSLR5.R
# MC estimate of the expected values:
mean(b0hat)
mean(b1hat)

# MC estimate of the variances:
var(b0hat)
var(b1hat)



324 R Scripts

3. Scripts Used in Chapter 03
Script 3.1: Example-3-1.R

data(gpa1, package=’wooldridge’)

# Just obtain parameter estimates:
lm(colGPA ~ hsGPA+ACT, data=gpa1)

# Store results under "GPAres" and display full table:
GPAres <- lm(colGPA ~ hsGPA+ACT, data=gpa1)
summary(GPAres)

Script 3.2: Example-3-2.R
data(wage1, package=’wooldridge’)

# OLS regression:
summary( lm(log(wage) ~ educ+exper+tenure, data=wage1) )

Script 3.3: Example-3-3.R
data(k401k, package=’wooldridge’)

# OLS regression:
summary( lm(prate ~ mrate+age, data=k401k) )

Script 3.4: Example-3-5.R
data(crime1, package=’wooldridge’)

# Model without avgsen:
summary( lm(narr86 ~ pcnv+ptime86+qemp86, data=crime1) )

# Model with avgsen:
summary( lm(narr86 ~ pcnv+avgsen+ptime86+qemp86, data=crime1) )

Script 3.5: Example-3-6.R
data(wage1, package=’wooldridge’)

# OLS regression:
summary( lm(log(wage) ~ educ, data=wage1) )

Script 3.6: OLS-Matrices.R
data(gpa1, package=’wooldridge’)

# Determine sample size & no. of regressors:
n <- nrow(gpa1); k<-2

# extract y
y <- gpa1$colGPA

# extract X & add a column of ones
X <- cbind(1, gpa1$hsGPA, gpa1$ACT)

# Display first rows of X:
head(X)

# Parameter estimates:
( bhat <- solve( t(X)%*%X ) %*% t(X)%*%y )



3. Scripts Used in Chapter 03 325

# Residuals, estimated variance of u and SER:
uhat <- y - X %*% bhat
sigsqhat <- as.numeric( t(uhat) %*% uhat / (n-k-1) )
( SER <- sqrt(sigsqhat) )

# Estimated variance of the parameter estimators and SE:
Vbetahat <- sigsqhat * solve( t(X)%*%X )
( se <- sqrt( diag(Vbetahat) ) )

Script 3.7: Omitted-Vars.R
data(gpa1, package=’wooldridge’)

# Parameter estimates for full and simple model:
beta.hat <- coef( lm(colGPA ~ ACT+hsGPA, data=gpa1) )
beta.hat

# Relation between regressors:
delta.tilde <- coef( lm(hsGPA ~ ACT, data=gpa1) )
delta.tilde

# Omitted variables formula for beta1.tilde:
beta.hat["ACT"] + beta.hat["hsGPA"]*delta.tilde["ACT"]

# Actual regression with hsGPA omitted:
lm(colGPA ~ ACT, data=gpa1)

Script 3.8: MLR-SE.R
data(gpa1, package=’wooldridge’)

# Full estimation results including automatic SE :
res <- lm(colGPA ~ hsGPA+ACT, data=gpa1)
summary(res)

# Extract SER (instead of calculation via residuals)
( SER <- summary(res)$sigma )

# regressing hsGPA on ACT for calculation of R2 & VIF
( R2.hsGPA <- summary( lm(hsGPA~ACT, data=gpa1) )$r.squared )
( VIF.hsGPA <- 1/(1-R2.hsGPA) )

# manual calculation of SE of hsGPA coefficient:
n <- nobs(res)
sdx <- sd(gpa1$hsGPA) * sqrt((n-1)/n) # (Note: sd() uses the (n-1) version)
( SE.hsGPA <- 1/sqrt(n) * SER/sdx * sqrt(VIF.hsGPA) )

Script 3.9: MLR-VIF.R
data(wage1, package=’wooldridge’)

# OLS regression:
lmres <- lm(log(wage) ~ educ+exper+tenure, data=wage1)

# Regression output:
summary(lmres)

# Load package "car" (has to be installed):
library(car)



326 R Scripts

# Automatically calculate VIF :
vif(lmres)

4. Scripts Used in Chapter 04
Script 4.1: Example-4-3.R

data(gpa1, package=’wooldridge’)

# Store results under "sumres" and display full table:
( sumres <- summary( lm(colGPA ~ hsGPA+ACT+skipped, data=gpa1) ) )

# Manually confirm the formulas: Extract coefficients and SE
regtable <- sumres$coefficients
bhat <- regtable[,1]
se <- regtable[,2]

# Reproduce t statistic
( tstat <- bhat / se )
# Reproduce p value
( pval <- 2*pt(-abs(tstat),137) )

Script 4.2: Example-4-1.R
data(wage1, package=’wooldridge’)

# OLS regression:
summary( lm(log(wage) ~ educ+exper+tenure, data=wage1) )

Script 4.3: Example-4-8.R
data(rdchem, package=’wooldridge’)

# OLS regression:
myres <- lm(log(rd) ~ log(sales)+profmarg, data=rdchem)

# Regression output:
summary(myres)

# 95% CI:
confint(myres)

# 99% CI:
confint(myres, level=0.99)

Script 4.4: F-Test-MLB.R
data(mlb1, package=’wooldridge’)

# Unrestricted OLS regression:
res.ur <- lm(log(salary) ~ years+gamesyr+bavg+hrunsyr+rbisyr, data=mlb1)

# Restricted OLS regression:
res.r <- lm(log(salary) ~ years+gamesyr, data=mlb1)

# R2:
( r2.ur <- summary(res.ur)$r.squared )
( r2.r <- summary(res.r)$r.squared )



5. Scripts Used in Chapter 05 327

# F statistic:
( F <- (r2.ur-r2.r) / (1-r2.ur) * 347/3 )

# p value = 1-cdf of the appropriate F distribution:
1-pf(F, 3,347)

Script 4.5: F-Test-MLB-auto.R
data(mlb1, package=’wooldridge’)

# Unrestricted OLS regression:
res.ur <- lm(log(salary) ~ years+gamesyr+bavg+hrunsyr+rbisyr, data=mlb1)

# Load package "car" (which has to be installed on the computer)
library(car)

# F test
myH0 <- c("bavg","hrunsyr","rbisyr")
linearHypothesis(res.ur, myH0)

Script 4.6: F-Test-MLB-auto2.R
# F test (F-Test-MLB-auto.R has to be run first!)
myH0 <- c("bavg", "hrunsyr=2*rbisyr")
linearHypothesis(res.ur, myH0)

Script 4.7: F-Test-MLB-auto3.R
# Note: Script "F-Test-MLB-auto.R" has to be run first to create res.ur.
# Which variables used in res.ur contain "yr" in their names?
myH0 <- matchCoefs(res.ur,"yr")
myH0

# F test (F-Test-MLB-auto.R has to be run first!)
linearHypothesis(res.ur, myH0)

Script 4.8: Example-4-10.R
data(meap93, package=’wooldridge’)

# define new variable within data frame
meap93$b_s <- meap93$benefits / meap93$salary

# Estimate three different models
model1<- lm(log(salary) ~ b_s , data=meap93)
model2<- lm(log(salary) ~ b_s+log(enroll)+log(staff), data=meap93)
model3<- lm(log(salary) ~ b_s+log(enroll)+log(staff)+droprate+gradrate

, data=meap93)
# Load package and display table of results
library(stargazer)
stargazer(list(model1,model2,model3),type="text",keep.stat=c("n","rsq"))

5. Scripts Used in Chapter 05
Script 5.1: Sim-Asy-OLS-norm.R

# Note: We’ll have to set the sample size first, e.g. by uncommenting:
# n <- 100
# Set the random seed



328 R Scripts

set.seed(1234567)
# set true parameters: intercept & slope
b0 <- 1; b1 <- 0.5
# initialize b1hat to store 10000 results:
b1hat <- numeric(10000)

# Draw a sample of x, fixed over replications:
x <- rnorm(n,4,1)
# repeat r times:
for(j in 1:10000) {
# Draw a sample of u (std. normal):
u <- rnorm(n)
# Draw a sample of y:
y <- b0 + b1*x + u
# regress y on x and store slope estimate at position j
bhat <- coef( lm(y~x) )
b1hat[j] <- bhat["x"]

}

Script 5.2: Sim-Asy-OLS-chisq.R
# Note: We’ll have to set the sample size first, e.g. by uncommenting:
# n <- 100
# Set the random seed
set.seed(1234567)
# set true parameters: intercept & slope
b0<-1; b1<-0.5
# initialize b1hat to store 10000 results:
b1hat <- numeric(10000)

# Draw a sample of x, fixed over replications:
x <- rnorm(n,4,1)
# repeat r times:
for(j in 1:10000) {
# Draw a sample of u (standardized chi-squared[1]):
u <- ( rchisq(n,1)-1 ) / sqrt(2)
# Draw a sample of y:
y <- b0 + b1*x + u
# regress y on x and store slope estimate at position j
bhat <- coef( lm(y~x) )
b1hat[j] <- bhat["x"]

}

Script 5.3: Sim-Asy-OLS-uncond.R
# Note: We’ll have to set the sample size first, e.g. by uncommenting:
# n <- 100
# Set the random seed
set.seed(1234567)
# set true parameters: intercept & slope
b0<-1; b1<-0.5
# initialize b1hat to store 10000 results:
b1hat <- numeric(10000)

# repeat r times:
for(j in 1:10000) {
# Draw a sample of x, varying over replications:
x <- rnorm(n,4,1)
# Draw a sample of u (std. normal):
u <- rnorm(n)



6. Scripts Used in Chapter 06 329

# Draw a sample of y:
y <- b0 + b1*x + u
# regress y on x and store slope estimate at position j
bhat <- coef( lm(y~x) )
b1hat[j] <- bhat["x"]

}

Script 5.4: Example-5-3.R
data(crime1, package=’wooldridge’)

# 1. Estimate restricted model:
restr <- lm(narr86 ~ pcnv+ptime86+qemp86, data=crime1)

# 2. Regression of residuals from restricted model:
utilde <- resid(restr)
LMreg <- lm(utilde ~ pcnv+ptime86+qemp86+avgsen+tottime, data=crime1)
# R-squared:
(r2 <- summary(LMreg)$r.squared )

# 3. Calculation of LM test statistic:
LM <- r2 * nobs(LMreg)
LM

# 4. Critical value from chi-squared distribution, alpha=10%:
qchisq(1-0.10, 2)

# Alternative to critical value: p value
1-pchisq(LM, 2)

# Alternative: automatic F test (see above)
library(car)
unrestr <- lm(narr86 ~ pcnv+ptime86+qemp86+avgsen+tottime, data=crime1)
linearHypothesis(unrestr, c("avgsen=0","tottime=0"))

6. Scripts Used in Chapter 06
Script 6.1: Data-Scaling.R

data(bwght, package=’wooldridge’)

# Basic model:
lm( bwght ~ cigs+faminc, data=bwght)

# Weight in pounds, manual way:
bwght$bwghtlbs <- bwght$bwght/16
lm( bwghtlbs ~ cigs+faminc, data=bwght)

# Weight in pounds, direct way:
lm( I(bwght/16) ~ cigs+faminc, data=bwght)

# Packs of cigarettes:
lm( bwght ~ I(cigs/20) +faminc, data=bwght)

Script 6.2: Example-6-1.R
data(hprice2, package=’wooldridge’)



330 R Scripts

# Estimate model with standardized variables:
lm(scale(price) ~ 0+scale(nox)+scale(crime)+scale(rooms)+

scale(dist)+scale(stratio), data=hprice2)

Script 6.3: Formula-Logarithm.R
data(hprice2, package=’wooldridge’)

# Estimate model with logs:
lm(log(price)~log(nox)+rooms, data=hprice2)

Script 6.4: Example-6-2.R
data(hprice2, package=’wooldridge’)

res <- lm(log(price)~log(nox)+log(dist)+rooms+I(rooms^2)+
stratio,data=hprice2)

summary(res)

# Using poly(...):
res <- lm(log(price)~log(nox)+log(dist)+poly(rooms,2,raw=TRUE)+

stratio,data=hprice2)
summary(res)

Script 6.5: Example-6-2-Anova.R
library(car)
data(hprice2, package=’wooldridge’)
res <- lm(log(price)~log(nox)+log(dist)+poly(rooms,2,raw=TRUE)+

stratio,data=hprice2)

# Manual F test for rooms:
linearHypothesis(res, matchCoefs(res,"rooms"))

# ANOVA (type 2) table:
Anova(res)

Script 6.6: Example-6-3.R
data(attend, package=’wooldridge’)

# Estimate model with interaction effect:
(myres<-lm(stndfnl~atndrte*priGPA+ACT+I(priGPA^2)+I(ACT^2), data=attend))

# Estimate for partial effect at priGPA=2.59:
b <- coef(myres)
b["atndrte"] + 2.59*b["atndrte:priGPA"]

# Test partial effect for priGPA=2.59:
library(car)
linearHypothesis(myres,c("atndrte+2.59*atndrte:priGPA"))

Script 6.7: Example-6-5.R
data(gpa2, package=’wooldridge’)

# Regress and report coefficients
reg <- lm(colgpa~sat+hsperc+hsize+I(hsize^2),data=gpa2)
reg



6. Scripts Used in Chapter 06 331

# Generate data set containing the regressor values for predictions
cvalues <- data.frame(sat=1200, hsperc=30, hsize=5)

# Point estimate of prediction
predict(reg, cvalues)

# Point estimate and 95% confidence interval
predict(reg, cvalues, interval = "confidence")

# Define three sets of regressor variables
cvalues <- data.frame(sat=c(1200,900,1400), hsperc=c(30,20,5),

hsize=c(5,3,1))
cvalues
# Point estimates and 99% confidence intervals for these
predict(reg, cvalues, interval = "confidence", level=0.99)

Script 6.8: Example-6-6.R
data(gpa2, package=’wooldridge’)

# Regress (as before)
reg <- lm(colgpa~sat+hsperc+hsize+I(hsize^2),data=gpa2)

# Define three sets of regressor variables (as before)
cvalues <- data.frame(sat=c(1200,900,1400), hsperc=c(30,20,5),

hsize=c(5,3,1))

# Point estimates and 95% prediction intervals for these
predict(reg, cvalues, interval = "prediction")

Script 6.9: Effects-Manual.R
# Repeating the regression from Example 6.2:
data(hprice2, package=’wooldridge’)

res <- lm( log(price) ~ log(nox)+log(dist)+rooms+I(rooms^2)+stratio,
data=hprice2)

# Predictions: Values of the regressors:
# rooms = 4-8, all others at the sample mean:
X <- data.frame(rooms=seq(4,8),nox=5.5498,dist=3.7958,stratio=18.4593)

# Calculate predictions and confidence interval:
pred <- predict(res, X, interval = "confidence")

# Table of regressor values, predictions and CI:
cbind(X,pred)

# Plot
matplot(X$rooms, pred, type="l", lty=c(1,2,2))

Script 6.10: Effects-Automatic.R
# Repeating the regression from Example 6.2:
data(hprice2, package=’wooldridge’)

res <- lm( log(price) ~ log(nox)+log(dist)+rooms+I(rooms^2)+stratio,
data=hprice2)



332 R Scripts

# Automatic effects plot using the package "effects"
library(effects)
plot( effect("rooms",res) )

7. Scripts Used in Chapter 07
Script 7.1: Example-7-1.R

data(wage1, package=’wooldridge’)

lm(wage ~ female+educ+exper+tenure, data=wage1)

Script 7.2: Example-7-6.R
data(wage1, package=’wooldridge’)

lm(log(wage)~married*female+educ+exper+I(exper^2)+tenure+I(tenure^2),
data=wage1)

Script 7.3: Example-7-1-logical.R
data(wage1, package=’wooldridge’)

# replace "female" with logical variable
wage1$female <- as.logical(wage1$female)
table(wage1$female)

# regression with logical variable
lm(wage ~ female+educ+exper+tenure, data=wage1)

Script 7.4: Regr-Factors.R
data(CPS1985,package="AER")

# Table of categories and frequencies for two factor variables:
table(CPS1985$gender)
table(CPS1985$occupation)

# Directly using factor variables in regression formula:
lm(log(wage) ~ education+experience+gender+occupation, data=CPS1985)

# Manually redefine the reference category:
CPS1985$gender <- relevel(CPS1985$gender,"female")
CPS1985$occupation <- relevel(CPS1985$occupation,"management")

# Rerun regression:
lm(log(wage) ~ education+experience+gender+occupation, data=CPS1985)

Script 7.5: Regr-Factors-Anova.R
data(CPS1985,package="AER")

# Regression
res <- lm(log(wage) ~ education+experience+gender+occupation, data=CPS1985)

# ANOVA table
car::Anova(res)



8. Scripts Used in Chapter 08 333

Script 7.6: Example-7-8.R
data(lawsch85, package=’wooldridge’)

# Define cut points for the rank
cutpts <- c(0,10,25,40,60,100,175)

# Create factor variable containing ranges for the rank
lawsch85$rankcat <- cut(lawsch85$rank, cutpts)

# Display frequencies
table(lawsch85$rankcat)

# Choose reference category
lawsch85$rankcat <- relevel(lawsch85$rankcat,"(100,175]")

# Run regression
(res <- lm(log(salary)~rankcat+LSAT+GPA+log(libvol)+log(cost), data=lawsch85))

# ANOVA table
car::Anova(res)

Script 7.7: Dummy-Interact.R
data(gpa3, package=’wooldridge’)

# Model with full interactions with female dummy (only for spring data)
reg<-lm(cumgpa~female*(sat+hsperc+tothrs), data=gpa3, subset=(spring==1))
summary(reg)

# F-Test from package "car". H0: the interaction coefficients are zero
# matchCoefs(...) selects all coeffs with names containing "female"
library(car)
linearHypothesis(reg, matchCoefs(reg, "female"))

Script 7.8: Dummy-Interact-Sep.R
data(gpa3, package=’wooldridge’)

# Estimate model for males (& spring data)
lm(cumgpa~sat+hsperc+tothrs, data=gpa3, subset=(spring==1&female==0))

# Estimate model for females (& spring data)
lm(cumgpa~sat+hsperc+tothrs, data=gpa3, subset=(spring==1&female==1))

8. Scripts Used in Chapter 08
Script 8.1: Example-8-2.R

data(gpa3, package=’wooldridge’)

# load packages (which need to be installed!)
library(lmtest); library(car)

# Estimate model (only for spring data)
reg <- lm(cumgpa~sat+hsperc+tothrs+female+black+white,

data=gpa3, subset=(spring==1))
# Usual SE:
coeftest(reg)



334 R Scripts

# Refined White heteroscedasticity-robust SE:
coeftest(reg, vcov=hccm)

Script 8.2: Example-8-2-cont.R
# F-Tests using different variance-covariance formulas:
myH0 <- c("black","white")
# Ususal VCOV
linearHypothesis(reg, myH0)
# Refined White VCOV
linearHypothesis(reg, myH0, vcov=hccm)
# Classical White VCOV
linearHypothesis(reg, myH0, vcov=hccm(reg,type="hc0"))

Script 8.3: Example-8-4.R
data(hprice1, package=’wooldridge’)

# Estimate model
reg <- lm(price~lotsize+sqrft+bdrms, data=hprice1)
reg

# Automatic BP test
library(lmtest)
bptest(reg)

# Manual regression of squared residuals
summary(lm( resid(reg)^2 ~ lotsize+sqrft+bdrms, data=hprice1))

Script 8.4: Example-8-5.R
data(hprice1, package=’wooldridge’)

# Estimate model
reg <- lm(log(price)~log(lotsize)+log(sqrft)+bdrms, data=hprice1)
reg

# BP test
library(lmtest)
bptest(reg)

# White test
bptest(reg, ~ fitted(reg) + I(fitted(reg)^2) )

Script 8.5: Example-8-6.R
data(k401ksubs, package=’wooldridge’)

# OLS (only for singles: fsize==1)
lm(nettfa ~ inc + I((age-25)^2) + male + e401k,

data=k401ksubs, subset=(fsize==1))

# WLS
lm(nettfa ~ inc + I((age-25)^2) + male + e401k, weight=1/inc,

data=k401ksubs, subset=(fsize==1))

Script 8.6: WLS-Robust.R
data(k401ksubs, package=’wooldridge’)

# WLS



9. Scripts Used in Chapter 09 335

wlsreg <- lm(nettfa ~ inc + I((age-25)^2) + male + e401k,
weight=1/inc, data=k401ksubs, subset=(fsize==1))

# non-robust results
library(lmtest); library(car)
coeftest(wlsreg)

# robust results (Refined White SE:)
coeftest(wlsreg,hccm)

Script 8.7: Example-8-7.R
data(smoke, package=’wooldridge’)

# OLS
olsreg<-lm(cigs~log(income)+log(cigpric)+educ+age+I(age^2)+restaurn,

data=smoke)
olsreg

# BP test
library(lmtest)
bptest(olsreg)

# FGLS: estimation of the variance function
logu2 <- log(resid(olsreg)^2)
varreg<-lm(logu2~log(income)+log(cigpric)+educ+age+I(age^2)+restaurn,

data=smoke)

# FGLS: WLS
w <- 1/exp(fitted(varreg))
lm(cigs~log(income)+log(cigpric)+educ+age+I(age^2)+restaurn,

weight=w ,data=smoke)

9. Scripts Used in Chapter 09
Script 9.1: Example-9-2-manual.R

data(hprice1, package=’wooldridge’)

# original linear regression
orig <- lm(price ~ lotsize+sqrft+bdrms, data=hprice1)

# regression for RESET test
RESETreg <- lm(price ~ lotsize+sqrft+bdrms+I(fitted(orig)^2)+

I(fitted(orig)^3), data=hprice1)
RESETreg

# RESET test. H0: all coeffs including "fitted" are=0
library(car)
linearHypothesis(RESETreg, matchCoefs(RESETreg,"fitted"))

Script 9.2: Example-9-2-automatic.R
data(hprice1, package=’wooldridge’)

# original linear regression
orig <- lm(price ~ lotsize+sqrft+bdrms, data=hprice1)



336 R Scripts

# RESET test
library(lmtest)
resettest(orig)

Script 9.3: Nonnested-Test.R
data(hprice1, package=’wooldridge’)

# two alternative models
model1 <- lm(price ~ lotsize + sqrft + bdrms, data=hprice1)
model2 <- lm(price ~ log(lotsize) + log(sqrft) + bdrms, data=hprice1)

# Test against comprehensive model
library(lmtest)
encomptest(model1,model2, data=hprice1)

Script 9.4: Sim-ME-Dep.R
# Set the random seed
set.seed(1234567)
# set true parameters: intercept & slope
b0<-1; b1<-0.5
# initialize b1hat to store 10000 results:
b1hat <- numeric(10000)
b1hat.me <- numeric(10000)

# Draw a sample of x, fixed over replications:
x <- rnorm(1000,4,1)
# repeat r times:
for(j in 1:10000) {
# Draw a sample of u
u <- rnorm(1000)
# Draw a sample of ystar:
ystar <- b0 + b1*x + u
# regress ystar on x and store slope estimate at position j
bhat <- coef( lm(ystar~x) )
b1hat[j] <- bhat["x"]
# Measurement error and mismeasured y:
e0 <- rnorm(1000)
y <- ystar+e0
# regress y on x and store slope estimate at position j
bhat.me <- coef( lm(y~x) )
b1hat.me[j] <- bhat.me["x"]

}

# Mean with and without ME
c( mean(b1hat), mean(b1hat.me) )
# Variance with and without ME
c( var(b1hat), var(b1hat.me) )

Script 9.5: Sim-ME-Explan.R
# Set the random seed
set.seed(1234567)
# set true parameters: intercept & slope
b0<-1; b1<-0.5
# initialize b1hat to store 10000 results:
b1hat <- numeric(10000)
b1hat.me <- numeric(10000)



9. Scripts Used in Chapter 09 337

# Draw a sample of x, fixed over replications:
xstar <- rnorm(1000,4,1)
# repeat r times:
for(j in 1:10000) {

# Draw a sample of u
u <- rnorm(1000)
# Draw a sample of ystar:
y <- b0 + b1*xstar + u
# regress y on xstar and store slope estimate at position j
bhat <- coef( lm(y~xstar) )
b1hat[j] <- bhat["xstar"]
# Measurement error and mismeasured y:
e1 <- rnorm(1000)
x <- xstar+e1
# regress y on x and store slope estimate at position j
bhat.me <- coef( lm(y~x) )
b1hat.me[j] <- bhat.me["x"]

}

# Mean with and without ME
c( mean(b1hat), mean(b1hat.me) )
# Variance with and without ME
c( var(b1hat), var(b1hat.me) )

Script 9.6: NA-NaN-Inf.R
x <- c(-1,0,1,NA,NaN,-Inf,Inf)
logx <- log(x)
invx <- 1/x
ncdf <- pnorm(x)
isna <- is.na(x)

data.frame(x,logx,invx,ncdf,isna)

Script 9.7: Missings.R
data(lawsch85, package=’wooldridge’)

# extract LSAT
lsat <- lawsch85$LSAT

# Create logical indicator for missings
missLSAT <- is.na(lawsch85$LSAT)

# LSAT and indicator for Schools No. 120-129:
rbind(lsat,missLSAT)[,120:129]

# Frequencies of indicator
table(missLSAT)

# Missings for all variables in data frame (counts)
colSums(is.na(lawsch85))

# Indicator for complete cases
compl <- complete.cases(lawsch85)
table(compl)



338 R Scripts

Script 9.8: Missings-Analyses.R
data(lawsch85, package=’wooldridge’)

# Mean of a variable with missings:
mean(lawsch85$LSAT)
mean(lawsch85$LSAT,na.rm=TRUE)

# Regression with missings
summary(lm(log(salary)~LSAT+cost+age, data=lawsch85))

Script 9.9: Outliers.R
data(rdchem, package=’wooldridge’)

# Regression
reg <- lm(rdintens~sales+profmarg, data=rdchem)

# Studentized residuals for all observations:
studres <- rstudent(reg)

# Display extreme values:
min(studres)
max(studres)

# Histogram (and overlayed density plot):
hist(studres, freq=FALSE)
lines(density(studres), lwd=2)

Script 9.10: LAD.R
data(rdchem, package=’wooldridge’)

# OLS Regression
ols <- lm(rdintens ~ I(sales/1000) +profmarg, data=rdchem)
# LAD Regression
library(quantreg)
lad <- rq(rdintens ~ I(sales/1000) +profmarg, data=rdchem)

# regression table
library(stargazer)
stargazer(ols,lad, type = "text")

10. Scripts Used in Chapter 10
Script 10.1: Example-10-2.R

data(intdef, package=’wooldridge’)

# Linear regression of static model:
summary( lm(i3~inf+def,data=intdef) )

Script 10.2: Example-Barium.R
data(barium, package=’wooldridge’)

# Imports from China: Variable "chnimp" from data frame "data"
# Monthly time series starting Feb. 1978
impts <- ts(barium$chnimp, start=c(1978,2), frequency=12)



10. Scripts Used in Chapter 10 339

# plot time series
plot(impts)

Script 10.3: Example-zoo.R
data(intdef, package=’wooldridge’)

# Variable "year" as the time measure:
intdef$year

# define "zoo" object containing all data, time measure=year:
library(zoo)
zoodata <- zoo(intdef, order.by=intdef$year)

# Time series plot of inflation
plot(zoodata$i3)

Script 10.4: Example-quantmod.R
library(quantmod)
# Which Yahoo Finance symbols?
# See http://finance.yahoo.com/lookup:
# "F" = Ford Motor Company

# Download data
getSymbols("F", auto.assign=TRUE)

# first and last 6 rows of resulting data frame:
head(F)
tail(F)

# Time series plot of adjusted closing prices:
plot(F$F.Adjusted, las=2)

Script 10.5: Example-10-4.R
# Libraries for dynamic lm, regression table and F tests
library(dynlm);library(lmtest);library(car)
data(fertil3, package=’wooldridge’)

# Define Yearly time series beginning in 1913
tsdata <- ts(fertil3, start=1913)

# Linear regression of model with lags:
res <- dynlm(gfr ~ pe + L(pe) + L(pe,2) + ww2 + pill, data=tsdata)
coeftest(res)

# F test. H0: all pe coefficients are=0
linearHypothesis(res, matchCoefs(res,"pe"))

Script 10.6: Example-10-4-contd.R
# Calculating the LRP
b<-coef(res)
b["pe"]+b["L(pe)"]+b["L(pe, 2)"]

# F test. H0: LRP=0
linearHypothesis(res,"pe + L(pe) + L(pe, 2) = 0")



340 R Scripts

Script 10.7: Example-10-7.R
library(dynlm);library(stargazer)
data(hseinv, package=’wooldridge’)

# Define Yearly time series beginning in 1947
tsdata <- ts(hseinv, start=1947)

# Linear regression of model with lags:
res1 <- dynlm(log(invpc) ~ log(price) , data=tsdata)
res2 <- dynlm(log(invpc) ~ log(price) + trend(tsdata), data=tsdata)

# Pretty regression table
stargazer(res1,res2, type="text")

Script 10.8: Example-10-11.R
library(dynlm);library(lmtest)
data(barium, package=’wooldridge’)

# Define monthly time series beginning in Feb. 1978
tsdata <- ts(barium, start=c(1978,2), frequency=12)

res <- dynlm(log(chnimp) ~ log(chempi)+log(gas)+log(rtwex)+befile6+
affile6+afdec6+ season(tsdata) , data=tsdata )

coeftest(res)

11. Scripts Used in Chapter 11
Script 11.1: Example-11-4.R

library(dynlm);library(stargazer)
data(nyse, package=’wooldridge’)

# Define time series (numbered 1,...,n)
tsdata <- ts(nyse)

# Linear regression of models with lags:
reg1 <- dynlm(return~L(return) , data=tsdata)
reg2 <- dynlm(return~L(return)+L(return,2) , data=tsdata)
reg3 <- dynlm(return~L(return)+L(return,2)+L(return,3), data=tsdata)

# Pretty regression table
stargazer(reg1, reg2, reg3, type="text",

keep.stat=c("n","rsq","adj.rsq","f"))

Script 11.2: Example-EffMkts.R
library(zoo);library(quantmod);library(dynlm);library(stargazer)

# Download data using the quantmod package:
getSymbols("AAPL", auto.assign = TRUE)

# Calculate return as the log difference
ret <- diff( log(AAPL$AAPL.Adjusted) )
# Subset 2008-2016 by special xts indexing:
ret <- ret["2008/2016"]

# Plot returns



11. Scripts Used in Chapter 11 341

plot(ret)

# Linear regression of models with lags:
ret <- as.zoo(ret) # dynlm cannot handle xts objects
reg1 <- dynlm(ret~L(ret) )
reg2 <- dynlm(ret~L(ret)+L(ret,2) )
reg3 <- dynlm(ret~L(ret)+L(ret,2)+L(ret,3) )

# Pretty regression table
stargazer(reg1, reg2, reg3, type="text",

keep.stat=c("n","rsq","adj.rsq","f"))

Script 11.3: Simulate-RandomWalk.R
# Initialize Random Number Generator
set.seed(348546)
# initial graph
plot(c(0,50),c(0,0),type="l",lwd=2,ylim=c(-18,18))

# loop over draws:
for(r in 1:30) {

# i.i.d. standard normal shock
e <- rnorm(50)
# Random walk as cumulative sum of shocks
y <- ts(cumsum(e))
# Add line to graph
lines(y, col=gray(.6))

}

Script 11.4: Simulate-RandomWalkDrift.R
# Initialize Random Number Generator
set.seed(348546)
# initial empty graph with expected value
plot(c(0,50),c(0,100),type="l",lwd=2)

# loop over draws:
for(r in 1:30) {

# i.i.d. standard normal shock
e <- rnorm(50)
# Random walk as cumulative sum of shocks
y <- ts(cumsum(2+e))
# Add line to graph
lines(y, col=gray(.6))

}

Script 11.5: Simulate-RandomWalkDrift-Diff.R
# Initialize Random Number Generator
set.seed(348546)
# initial empty graph with expected value
plot(c(0,50),c(2,2),type="l",lwd=2,ylim=c(-1,5))

# loop over draws:
for(r in 1:30) {

# i.i.d. standard normal shock
e <- rnorm(50)
# Random walk as cumulative sum of shocks
y <- ts(cumsum(2+e))
# First difference



342 R Scripts

Dy <- diff(y)
# Add line to graph
lines(Dy, col=gray(.6))

}

Script 11.6: Example-11-6.R
# Libraries for dynamic lm and "stargazer" regression table
library(dynlm);library(stargazer)
data(fertil3, package=’wooldridge’)

# Define Yearly time series beginning in 1913
tsdata <- ts(fertil3, start=1913)

# Linear regression of model with first differences:
res1 <- dynlm( d(gfr) ~ d(pe), data=tsdata)

# Linear regression of model with lagged differences:
res2 <- dynlm( d(gfr) ~ d(pe) + L(d(pe)) + L(d(pe),2), data=tsdata)

# Pretty regression table
stargazer(res1,res2,type="text")

12. Scripts Used in Chapter 12
Script 12.1: Example-12-2.R

library(dynlm);library(lmtest)
data(phillips, package=’wooldridge’)

# Define Yearly time series beginning in 1948
tsdata <- ts(phillips, start=1948)

# Estimation of static Phillips curve:
reg.s <- dynlm( inf ~ unem, data=tsdata, end=1996)
# residuals and AR(1) test:
residual.s <- resid(reg.s)
coeftest( dynlm(residual.s ~ L(residual.s)) )

# Same with expectations-augmented Phillips curve:
reg.ea <- dynlm( d(inf) ~ unem, data=tsdata, end=1996)
residual.ea <- resid(reg.ea)
coeftest( dynlm(residual.ea ~ L(residual.ea)) )

Script 12.2: Example-12-4.R
library(dynlm);library(car);library(lmtest)
data(barium, package=’wooldridge’)

tsdata <- ts(barium, start=c(1978,2), frequency=12)

reg <- dynlm(log(chnimp)~log(chempi)+log(gas)+log(rtwex)+
befile6+affile6+afdec6, data=tsdata )

# Pedestrian test:
residual <- resid(reg)
resreg <- dynlm(residual ~ L(residual)+L(residual,2)+L(residual,3)+

log(chempi)+log(gas)+log(rtwex)+befile6+



12. Scripts Used in Chapter 12 343

affile6+afdec6, data=tsdata )
linearHypothesis(resreg,

c("L(residual)","L(residual, 2)","L(residual, 3)"))

# Automatic test:
bgtest(reg, order=3, type="F")

Script 12.3: Example-DWtest.R
library(dynlm);library(lmtest)
data(phillips, package=’wooldridge’)

tsdata <- ts(phillips, start=1948)

# Estimation of both Phillips curve models:
reg.s <- dynlm( inf ~ unem, data=tsdata, end=1996)
reg.ea <- dynlm( d(inf) ~ unem, data=tsdata, end=1996)

# DW tests
dwtest(reg.s)
dwtest(reg.ea)

Script 12.4: Example-12-5.R
library(dynlm);library(car);library(orcutt)
data(barium, package=’wooldridge’)

tsdata <- ts(barium, start=c(1978,2), frequency=12)

# OLS estimation
olsres <- dynlm(log(chnimp)~log(chempi)+log(gas)+log(rtwex)+

befile6+affile6+afdec6, data=tsdata)

# Cochrane-Orcutt estimation
cochrane.orcutt(olsres)

Script 12.5: Example-12-1.R
library(dynlm);library(lmtest);library(sandwich)
data(prminwge, package=’wooldridge’)

tsdata <- ts(prminwge, start=1950)

# OLS regression
reg<-dynlm(log(prepop)~log(mincov)+log(prgnp)+log(usgnp)+trend(tsdata),

data=tsdata )
# results with usual SE
coeftest(reg)
# results with HAC SE
coeftest(reg, vcovHAC)

Script 12.6: Example-12-9.R
library(dynlm);library(lmtest)
data(nyse, package=’wooldridge’)

tsdata <- ts(nyse)

# Linear regression of model:
reg <- dynlm(return ~ L(return), data=tsdata)



344 R Scripts

# squared residual
residual.sq <- resid(reg)^2

# Model for squared residual:
ARCHreg <- dynlm(residual.sq ~ L(residual.sq))
coeftest(ARCHreg)

Script 12.7: Example-ARCH.R
library(zoo);library(quantmod);library(dynlm);library(stargazer)

# Download data using the quantmod package:
getSymbols("AAPL", auto.assign = TRUE)

# Calculate return as the log difference
ret <- diff( log(AAPL$AAPL.Adjusted) )
# Subset 2008-2016 by special xts indexing:
ret <- ret["2008/2016"]

# AR(1) model for returns
ret <- as.zoo(ret)
reg <- dynlm( ret ~ L(ret) )

# squared residual
residual.sq <- resid(reg)^2

# Model for squared residual:
ARCHreg <- dynlm(residual.sq ~ L(residual.sq))
summary(ARCHreg)

13. Scripts Used in Chapter 13
Script 13.1: Example-13-2.R

data(cps78_85, package=’wooldridge’)

# Detailed OLS results including interaction terms
summary( lm(lwage ~ y85*(educ+female) +exper+ I((exper^2)/100) + union,

data=cps78_85) )

Script 13.2: Example-13-3-1.R
data(kielmc, package=’wooldridge’)

# Separate regressions for 1978 and 1981: report coeeficients only
coef( lm(rprice~nearinc, data=kielmc, subset=(year==1978)) )
coef( lm(rprice~nearinc, data=kielmc, subset=(year==1981)) )

# Joint regression including an interaction term
library(lmtest)
coeftest( lm(rprice~nearinc*y81, data=kielmc) )

Script 13.3: Example-13-3-2.R
DiD <- lm(log(rprice)~nearinc*y81 , data=kielmc)
DiDcontr <- lm(log(rprice)~nearinc*y81+age+I(age^2)+log(intst)+

log(land)+log(area)+rooms+baths, data=kielmc)
library(stargazer)
stargazer(DiD,DiDcontr,type="text")



13. Scripts Used in Chapter 13 345

Script 13.4: PDataFrame.R
library(plm)
data(crime2, package=’wooldridge’)

# Define panel data frame
crime2.p <- pdata.frame(crime2, index=46 )

# Panel dimensions:
pdim(crime2.p)

# Observation 1-6: new "id" and "time" and some other variables:
crime2.p[1:6,c("id","time","year","pop","crimes","crmrte","unem")]

Script 13.5: Example-PLM-Calcs.R
library(plm)
data(crime4, package=’wooldridge’)

# Generate pdata.frame:
crime4.p <- pdata.frame(crime4, index=c("county","year") )

# Calculations within the pdata.frame:
crime4.p$cr.l <- lag(crime4.p$crmrte)
crime4.p$cr.d <- diff(crime4.p$crmrte)
crime4.p$cr.B <- Between(crime4.p$crmrte)
crime4.p$cr.W <- Within(crime4.p$crmrte)

# Display selected variables for observations 1-16:
crime4.p[1:16,c("county","year","crmrte","cr.l","cr.d","cr.B","cr.W")]

Script 13.6: Example-FD.R
library(plm); library(lmtest)
data(crime2, package=’wooldridge’)

crime2.p <- pdata.frame(crime2, index=46 )

# manually calculate first differences:
crime2.p$dyear <- diff(crime2.p$year)
crime2.p$dcrmrte <- diff(crime2.p$crmrte)
crime2.p$dunem <- diff(crime2.p$unem)

# Display selected variables for observations 1-6:
crime2.p[1:6,c("id","time","year","dyear","crmrte","dcrmrte","unem","dunem")]

# Estimate FD model with lm on differenced data:
coeftest( lm(dcrmrte~dunem, data=crime2.p) )

# Estimate FD model with plm on original data:
coeftest( plm(crmrte~unem, data=crime2.p, model="fd") )

Script 13.7: Example-13-9.R
library(plm);library(lmtest)
data(crime4, package=’wooldridge’)

crime4.p <- pdata.frame(crime4, index=c("county","year") )
pdim(crime4.p)

# manually calculate first differences of crime rate:



346 R Scripts

crime4.p$dcrmrte <- diff(crime4.p$crmrte)

# Display selected variables for observations 1-9:
crime4.p[1:9, c("county","year","crmrte","dcrmrte")]

# Estimate FD model:
coeftest( plm(log(crmrte)~d83+d84+d85+d86+d87+lprbarr+lprbconv+

lprbpris+lavgsen+lpolpc,data=crime4.p, model="fd") )

14. Scripts Used in Chapter 14
Script 14.1: Example-14-2.R

library(plm)
data(wagepan, package=’wooldridge’)

# Generate pdata.frame:
wagepan.p <- pdata.frame(wagepan, index=c("nr","year") )

pdim(wagepan.p)

# Estimate FE model
summary( plm(lwage~married+union+factor(year)*educ,

data=wagepan.p, model="within") )

Script 14.2: Example-14-4-1.R
library(plm);library(stargazer)
data(wagepan, package=’wooldridge’)

# Generate pdata.frame:
wagepan.p <- pdata.frame(wagepan, index=c("nr","year") )

pdim(wagepan.p)

# Check variation of variables within individuals
pvar(wagepan.p)

Script 14.3: Example-14-4-2.R
# Estimate different models
wagepan.p$yr<-factor(wagepan.p$year)

reg.ols<- (plm(lwage~educ+black+hisp+exper+I(exper^2)+married+union+yr,
data=wagepan.p, model="pooling") )

reg.re <- (plm(lwage~educ+black+hisp+exper+I(exper^2)+married+union+yr,
data=wagepan.p, model="random") )

reg.fe <- (plm(lwage~ I(exper^2)+married+union+yr,
data=wagepan.p, model="within") )

# Pretty table of selected results (not reporting year dummies)
stargazer(reg.ols,reg.re,reg.fe, type="text",

column.labels=c("OLS","RE","FE"),keep.stat=c("n","rsq"),
keep=c("ed","bl","hi","exp","mar","un"))



14. Scripts Used in Chapter 14 347

Script 14.4: Example-HausmTest.R
# Note that the estimates "reg.fe" and "reg.re" are calculated in
# Example 14.4. The scripts have to be run first.

# Hausman test of RE vs. FE:
phtest(reg.fe, reg.re)

Script 14.5: Example-Dummy-CRE-1.R
library(plm);library(stargazer)
data(wagepan, package=’wooldridge’)

# Generate pdata.frame:
wagepan.p <- pdata.frame(wagepan, index=c("nr","year") )

# Estimate FE parameter in 3 different ways:
wagepan.p$yr<-factor(wagepan.p$year)
reg.fe <-(plm(lwage~married+union+year*educ,data=wagepan.p, model="within"))
reg.dum<-( lm(lwage~married+union+year*educ+factor(nr), data=wagepan.p))
reg.re <-(plm(lwage~married+union+year*educ,data=wagepan.p, model="random"))
reg.cre<-(plm(lwage~married+union+year*educ+Between(married)+Between(union)

,data=wagepan.p, model="random"))

Script 14.6: Example-Dummy-CRE-2.R
stargazer(reg.fe,reg.dum,reg.cre,reg.re,type="text",model.names=FALSE,

keep=c("married","union",":educ"),keep.stat=c("n","rsq"),
column.labels=c("Within","Dummies","CRE","RE"))

Script 14.7: Example-CRE-test-RE.R
# Note that the estimates "reg.cre" are calculated in
# Script "Example-Dummy-CRE-1.R" which has to be run first.

# RE test as an F test on the "Between" coefficients
library(car)
linearHypothesis(reg.cre, matchCoefs(reg.cre,"Between"))

Script 14.8: Example-CRE2.R
library(plm)
data(wagepan, package=’wooldridge’)

# Generate pdata.frame:
wagepan.p <- pdata.frame(wagepan, index=c("nr","year") )

# Estimate CRE parameters
wagepan.p$yr<-factor(wagepan.p$year)
summary(plm(lwage~married+union+educ+black+hisp+Between(married)+

Between(union), data=wagepan.p, model="random"))

Script 14.9: Example-13-9-ClSE.R
library(plm);library(lmtest)
data(crime4, package=’wooldridge’)

# Generate pdata.frame:
crime4.p <- pdata.frame(crime4, index=c("county","year") )

# Estimate FD model:
reg <- ( plm(log(crmrte)~d83+d84+d85+d86+d87+lprbarr+lprbconv+



348 R Scripts

lprbpris+lavgsen+lpolpc,data=crime4.p, model="fd") )
# Regression table with standard SE
coeftest(reg)
# Regression table with "clustered" SE (default type HC0):
coeftest(reg, vcovHC)
# Regression table with "clustered" SE (small-sample correction)
# This is the default version used by Stata and reported by Wooldridge:
coeftest(reg, vcovHC(reg, type="sss"))

15. Scripts Used in Chapter 15
Script 15.1: Example-15-1.R

library(AER);library(stargazer)
data(mroz, package=’wooldridge’)

# restrict to non-missing wage observations
oursample <- subset(mroz, !is.na(wage))

# OLS slope parameter manually
with(oursample, cov(log(wage),educ) / var(educ) )
# IV slope parameter manually
with(oursample, cov(log(wage),fatheduc) / cov(educ,fatheduc) )

# OLS automatically
reg.ols <- lm(log(wage) ~ educ, data=oursample)

# IV automatically
reg.iv <- ivreg(log(wage) ~ educ | fatheduc, data=oursample)

# Pretty regression table
stargazer(reg.ols,reg.iv, type="text")

Script 15.2: Example-15-4.R
library(AER);library(stargazer)
data(card, package=’wooldridge’)

# Checking for relevance: reduced form
redf<-lm(educ ~ nearc4+exper+I(exper^2)+black+smsa+south+smsa66+reg662+

reg663+reg664+reg665+reg666+reg667+reg668+reg669, data=card)
# OLS
ols<-lm(log(wage)~educ+exper+I(exper^2)+black+smsa+south+smsa66+reg662+

reg663+reg664+reg665+reg666+reg667+reg668+reg669, data=card)
# IV estimation
iv <-ivreg(log(wage)~educ+exper+I(exper^2)+black+smsa+south+smsa66+

reg662+reg663+reg664+reg665+reg666+reg667+reg668+reg669
| nearc4+exper+I(exper^2)+black+smsa+south+smsa66+
reg662+reg663+reg664+reg665+reg666+reg667+reg668+reg669

, data=card)

# Pretty regression table of selected coefficients
stargazer(redf,ols,iv,type="text",

keep=c("ed","near","exp","bl"),keep.stat=c("n","rsq"))



15. Scripts Used in Chapter 15 349

Script 15.3: Example-15-5.R
library(AER);library(stargazer)
data(mroz, package=’wooldridge’)

# restrict to non-missing wage observations
oursample <- subset(mroz, !is.na(wage))

# 1st stage: reduced form
stage1 <- lm(educ~exper+I(exper^2)+motheduc+fatheduc, data=oursample)

# 2nd stage
man.2SLS<-lm(log(wage)~fitted(stage1)+exper+I(exper^2), data=oursample)

# Automatic 2SLS estimation
aut.2SLS<-ivreg(log(wage)~educ+exper+I(exper^2)

| motheduc+fatheduc+exper+I(exper^2) , data=oursample)

# Pretty regression table
stargazer(stage1,man.2SLS,aut.2SLS,type="text",keep.stat=c("n","rsq"))

Script 15.4: Example-15-7.R
library(AER);library(lmtest)
data(mroz, package=’wooldridge’)

# restrict to non-missing wage observations
oursample <- subset(mroz, !is.na(wage))

# 1st stage: reduced form
stage1<-lm(educ~exper+I(exper^2)+motheduc+fatheduc, data=oursample)

# 2nd stage
stage2<-lm(log(wage)~educ+exper+I(exper^2)+resid(stage1),data=oursample)

# results including t tests
coeftest(stage2)

Script 15.5: Example-15-8.R
library(AER)
data(mroz, package=’wooldridge’)

# restrict to non-missing wage observations
oursample <- subset(mroz, !is.na(wage))

# IV regression
summary( res.2sls <- ivreg(log(wage) ~ educ+exper+I(exper^2)

| exper+I(exper^2)+motheduc+fatheduc,data=oursample) )

# Auxiliary regression
res.aux <- lm(resid(res.2sls) ~ exper+I(exper^2)+motheduc+fatheduc

, data=oursample)

# Calculations for test
( r2 <- summary(res.aux)$r.squared )
( n <- nobs(res.aux) )
( teststat <- n*r2 )
( pval <- 1-pchisq(teststat,1) )



350 R Scripts

Script 15.6: Example-15-10.R
library(plm)
data(jtrain, package=’wooldridge’)

# Define panel data (for 1987 and 1988 only)
jtrain.87.88 <- subset(jtrain,year<=1988)
jtrain.p<-pdata.frame(jtrain.87.88, index=c("fcode","year"))

# IV FD regression
summary( plm(log(scrap)~hrsemp|grant, model="fd",data=jtrain.p) )

16. Scripts Used in Chapter 16
Script 16.1: Example-16-5-ivreg.R

library(AER)
data(mroz, package=’wooldridge’)
oursample <- subset(mroz,!is.na(wage))

# 2SLS regressions
summary( ivreg(hours~log(wage)+educ+age+kidslt6+nwifeinc

|educ+age+kidslt6+nwifeinc+exper+I(exper^2), data=oursample))
summary( ivreg(log(wage)~hours+educ+exper+I(exper^2)

|educ+age+kidslt6+nwifeinc+exper+I(exper^2), data=oursample))

Script 16.2: Example-16-5-systemfit-prep.R
library(systemfit)
data(mroz, package=’wooldridge’)
oursample <- subset(mroz,!is.na(wage))

# Define system of equations and instruments
eq.hrs <- hours ~ log(wage)+educ+age+kidslt6+nwifeinc
eq.wage <- log(wage)~ hours +educ+exper+I(exper^2)
eq.system<- list(eq.hrs, eq.wage)
instrum <- ~educ+age+kidslt6+nwifeinc+exper+I(exper^2)

Script 16.3: Example-16-5-systemfit.R
# 2SLS of whole system (run Example-16-5-systemfit-prep.R first!)
summary(systemfit(eq.system,inst=instrum,data=oursample,method="2SLS"))

Script 16.4: Example-16-5-3sls.R
# 3SLS of whole system (run Example-16-5-systemfit-prep.R first!)

summary(systemfit(eq.system,inst=instrum,data=oursample,method="3SLS"))

17. Scripts Used in Chapter 17
Script 17.1: Example-17-1-1.R

library(car); library(lmtest) # for robust SE
data(mroz, package=’wooldridge’)

# Estimate linear probability model
linprob <- lm(inlf~nwifeinc+educ+exper+I(exper^2)+age+kidslt6+kidsge6,data=mroz)
# Regression table with heteroscedasticity-robust SE and t tests:
coeftest(linprob,vcov=hccm)



17. Scripts Used in Chapter 17 351

Script 17.2: Example-17-1-2.R
# predictions for two "extreme" women (run Example-17-1-1.R first!):
xpred <- list(nwifeinc=c(100,0),educ=c(5,17),exper=c(0,30),

age=c(20,52),kidslt6=c(2,0),kidsge6=c(0,0))
predict(linprob,xpred)

Script 17.3: Example-17-1-3.R
data(mroz, package=’wooldridge’)

# Estimate logit model
logitres<-glm(inlf~nwifeinc+educ+exper+I(exper^2)+age+kidslt6+kidsge6,

family=binomial(link=logit),data=mroz)
# Summary of results:
summary(logitres)
# Log likelihood value:
logLik(logitres)
# McFadden’s pseudo R2:
1 - logitres$deviance/logitres$null.deviance

Script 17.4: Example-17-1-4.R
data(mroz, package=’wooldridge’)

# Estimate probit model
probitres<-glm(inlf~nwifeinc+educ+exper+I(exper^2)+age+kidslt6+kidsge6,

family=binomial(link=probit),data=mroz)
# Summary of results:
summary(probitres)
# Log likelihood value:
logLik(probitres)
# McFadden’s pseudo R2:
1 - probitres$deviance/probitres$null.deviance

Script 17.5: Example-17-1-5.R
################################################################
# Test of overall significance:
# Manual calculation of the LR test statistic:
probitres$null.deviance - probitres$deviance

# Automatic calculations including p-values,...:
library(lmtest)
lrtest(probitres)

################################################################
# Test of H0: experience and age are irrelevant
restr <- glm(inlf~nwifeinc+educ+ kidslt6+kidsge6,

family=binomial(link=probit),data=mroz)
lrtest(restr,probitres)

Script 17.6: Example-17-1-6.R
# Predictions from linear probability, probit and logit model:
# (run 17-1-1.R through 17-1-4.R first to define the variables!)
predict(linprob, xpred,type = "response")
predict(logitres, xpred,type = "response")
predict(probitres,xpred,type = "response")



352 R Scripts

Script 17.7: Binary-Predictions.R
# Simulated data
set.seed(8237445)
y <- rbinom(100,1,0.5)
x <- rnorm(100) + 2*y

# Estimation
linpr.res <- lm(y~x)
logit.res <- glm(y~x,family=binomial(link=logit))
probit.res<- glm(y~x,family=binomial(link=probit))

# Prediction for regular grid of x values
xp <- seq(from=min(x),to=max(x),length=50)
linpr.p <- predict( linpr.res, list(x=xp), type="response" )
logit.p <- predict( logit.res, list(x=xp), type="response" )
probit.p<- predict( probit.res,list(x=xp), type="response" )

# Graph
plot(x,y)
lines(xp,linpr.p, lwd=2,lty=1)
lines(xp,logit.p, lwd=2,lty=2)
lines(xp,probit.p,lwd=1,lty=1)
legend("topleft",c("linear prob.","logit","probit"),

lwd=c(2,2,1),lty=c(1,2,1))

Script 17.8: Binary-Margeff.R
# Calculate partial effects
linpr.eff <- coef(linpr.res)["x"] * rep(1,100)
logit.eff <- coef(logit.res)["x"] * dlogis(predict(logit.res))
probit.eff <- coef(probit.res)["x"] * dnorm(predict(probit.res))

# Graph
plot( x,linpr.eff, pch=1,ylim=c(0,.7),ylab="partial effect")
points(x,logit.eff, pch=3)
points(x,probit.eff,pch=18)
legend("topright",c("linear prob.","logit","probit"),pch=c(1,3,18))

Script 17.9: Example-17-1-7.R
# APEs (run 17-1-1.R through 17-1-4.R first to define the variables!)

# Calculation of linear index at individual values:
xb.log <- predict(logitres)
xb.prob<- predict(probitres)
# APE factors = average(g(xb))
factor.log <- mean( dlogis(xb.log) )
factor.prob<- mean( dnorm(xb.prob) )
cbind(factor.log,factor.prob)

# average partial effects = beta*factor:
APE.lin <- coef(linprob) * 1
APE.log <- coef(logitres) * factor.log
APE.prob<- coef(probitres) * factor.prob

# Table of APEs
cbind(APE.lin, APE.log, APE.prob)



17. Scripts Used in Chapter 17 353

Script 17.10: Example-17-1-8.R
# Automatic APE calculations with package mfx
library(mfx)
logitmfx(inlf~nwifeinc+educ+exper+I(exper^2)+age+kidslt6+kidsge6,

data=mroz, atmean=FALSE)

Script 17.11: Example-17-3-1.R
data(crime1, package=’wooldridge’)

# Estimate linear model
lm.res <- lm(narr86~pcnv+avgsen+tottime+ptime86+qemp86+inc86+

black+hispan+born60, data=crime1)
# Estimate Poisson model
Poisson.res <- glm(narr86~pcnv+avgsen+tottime+ptime86+qemp86+inc86+

black+hispan+born60, data=crime1, family=poisson)
# Quasi-Poisson model
QPoisson.res<- glm(narr86~pcnv+avgsen+tottime+ptime86+qemp86+inc86+

black+hispan+born60, data=crime1, family=quasipoisson)

Script 17.12: Example-17-3-2.R
# Example 17.3: Regression table (run Example-17-3-1.R first!)
library(stargazer) # package for regression output
stargazer(lm.res,Poisson.res,QPoisson.res,type="text",keep.stat="n")

Script 17.13: Tobit-CondMean.R
# Simulated data
set.seed(93876553)
x <- sort(rnorm(100)+4)
xb <- -4 + 1*x
ystar <- xb + rnorm(100)
y <- ystar
y[ystar<0]<- 0

# Conditional means
Eystar <- xb
Ey <- pnorm(xb/1)*xb+1*dnorm(xb/1)

# Graph
plot(x,ystar,ylab="y", pch=3)
points(x,y, pch=1)
lines(x,Eystar, lty=2,lwd=2)
lines(x,Ey , lty=1,lwd=2)
abline(h=0,lty=3) # horizontal line at 0
legend("topleft",c(expression(y^"*"),"y",expression(E(y^"*")),"E(y)"),

lty=c(NA,NA,2,1),pch=c(3,1,NA,NA),lwd=c(1,1,2,2))

Script 17.14: Example-17-2.R
data(mroz, package=’wooldridge’)

# Estimate Tobit model using censReg:
library(censReg)
TobitRes <- censReg(hours~nwifeinc+educ+exper+I(exper^2)+

age+kidslt6+kidsge6, data=mroz )
summary(TobitRes)

# Partial Effects at the average x:
margEff(TobitRes)



354 R Scripts

Script 17.15: Example-17-2-survreg.R
# Estimate Tobit model using survreg:
library(survival)
res <- survreg(Surv(hours, hours>0, type="left") ~ nwifeinc+educ+exper+

I(exper^2)+age+kidslt6+kidsge6, data=mroz, dist="gaussian")
summary(res)

Script 17.16: Example-17-4.R
library(survival)
data(recid, package=’wooldridge’)

# Define Dummy for UNcensored observations
recid$uncensored <- recid$cens==0
# Estimate censored regression model:
res<-survreg(Surv(log(durat),uncensored, type="right") ~ workprg+priors+

tserved+felon+alcohol+drugs+black+married+educ+age,
data=recid, dist="gaussian")

# Output:
summary(res)

Script 17.17: TruncReg-Simulation.R
library(truncreg)
# Simulated data
set.seed(93876553)
x <- sort(rnorm(100)+4)
y <- -4 + 1*x + rnorm(100)

# complete observations and observed sample:
compl <- data.frame(x,y)
sample <- subset(compl, y>0)

# Predictions
pred.OLS <- predict( lm(y~x, data=sample) )
pred.trunc <- predict( truncreg(y~x, data=sample) )

# Graph
plot( compl$x, compl$y, pch= 1,xlab="x",ylab="y")
points(sample$x,sample$y, pch=16)
lines( sample$x,pred.OLS, lty=2,lwd=2)
lines( sample$x,pred.trunc,lty=1,lwd=2)
abline(h=0,lty=3) # horizontal line at 0
legend("topleft", c("all points","observed points","OLS fit",

"truncated regression"),
lty=c(NA,NA,2,1),pch=c(1,16,NA,NA),lwd=c(1,1,2,2))

Script 17.18: Example-17-5.R
library(sampleSelection)
data(mroz, package=’wooldridge’)

# Estimate Heckman selection model (2 step version)
res<-selection(inlf~educ+exper+I(exper^2)+nwifeinc+age+kidslt6+kidsge6,

log(wage)~educ+exper+I(exper^2), data=mroz, method="2step" )
# Summary of results:
summary(res)



18. Scripts Used in Chapter 18 355

18. Scripts Used in Chapter 18
Script 18.1: Example-18-1.R

library(dynlm); library(stargazer)
data(hseinv, package=’wooldridge’)

# detrended variable: residual from a regression on the obs. index:
trendreg <- dynlm( log(invpc) ~ trend(hseinv), data=hseinv )
hseinv$linv.detr <- resid( trendreg )
# ts data:
hseinv.ts <- ts(hseinv)

# Koyck geometric d.l.:
gDL<-dynlm(linv.detr~gprice + L(linv.detr) ,data=hseinv.ts)
# rational d.l.:
rDL<-dynlm(linv.detr~gprice + L(linv.detr) + L(gprice),data=hseinv.ts)

stargazer(gDL,rDL, type="text", keep.stat=c("n","adj.rsq"))

# LRP geometric DL:
b <- coef(gDL)
b["gprice"] / (1-b["L(linv.detr)"])

# LRP rationalDL:
b <- coef(rDL)
(b["gprice"]+b["L(gprice)"]) / (1-b["L(linv.detr)"])

Script 18.2: Example-18-4.R
library(dynlm)
data(inven, package=’wooldridge’)

# variable to test: y=log(gdp)
inven$y <- log(inven$gdp)
inven.ts<- ts(inven)

# summary output of ADF regression:
summary(dynlm( d(y) ~ L(y) + L(d(y)) + trend(inven.ts), data=inven.ts))

# automated ADF test using tseries:
library(tseries)
adf.test(inven$y, k=1)

Script 18.3: Example-18-4-urca.R
library(urca)
data(inven, package=’wooldridge’)

# automated ADF test using urca:
summary( ur.df(log(inven$gdp) , type = c("trend"), lags = 1) )

Script 18.4: Simulate-Spurious-Regression-1.R
# Initialize Random Number Generator
set.seed(29846)

# i.i.d. N(0,1) innovations
n <- 50
e <- rnorm(n)
a <- rnorm(n)
# independent random walks



356 R Scripts

x <- cumsum(a)
y <- cumsum(e)

# plot
plot(x,type="l",lty=1,lwd=1)
lines(y ,lty=2,lwd=2)
legend("topright",c("x","y"), lty=c(1,2), lwd=c(1,2))

# Regression of y on x
summary( lm(y~x) )

Script 18.5: Simulate-Spurious-Regression-2.R
# Initialize Random Number Generator
set.seed(29846)

# generate 10,000 independent random walks
# and store the p val of the t test
pvals <- numeric(10000)
for (r in 1:10000) {
# i.i.d. N(0,1) innovations
n <- 50
a <- rnorm(n)
e <- rnorm(n)
# independent random walks
x <- cumsum(a)
y <- cumsum(e)
# regression summary
regsum <- summary(lm(y~x))
# p value: 2nd row, 4th column of regression table
pvals[r] <- regsum$coef[2,4]

}

# How often is p<5% ?
table(pvals<=0.05)

Script 18.6: Example-18-8.R
# load updataed data from URfIE Website since online file is incomplete
library(dynlm); library(stargazer)
data(phillips, package=’wooldridge’)
tsdat=ts(phillips, start=1948)

# Estimate models and display results
res1 <- dynlm(unem ~ unem_1 , data=tsdat, end=1996)
res2 <- dynlm(unem ~ unem_1+inf_1, data=tsdat, end=1996)
stargazer(res1, res2 ,type="text", keep.stat=c("n","adj.rsq","ser"))

# Predictions for 1997-2003 including 95% forecast intervals:
predict(res1, newdata=window(tsdat,start=1997), interval="prediction")
predict(res2, newdata=window(tsdat,start=1997), interval="prediction")

Script 18.7: Example-18-9.R
# Note: run Example-18-8.R first to generate the results res1 and res2

# Actual unemployment and forecasts:
y <- window(tsdat,start=1997)[,"unem"]
f1 <- predict( res1, newdata=window(tsdat,start=1997) )



19. Scripts Used in Chapter 19 357

f2 <- predict( res2, newdata=window(tsdat,start=1997) )

# Plot unemployment and forecasts:
matplot(time(y), cbind(y,f1,f2), type="l", col="black",lwd=2,lty=1:3)
legend("topleft",c("Unempl.","Forecast 1","Forecast 2"),lwd=2,lty=1:3)

# Forecast errors:
e1<- y - f1
e2<- y - f2

# RMSE:
sqrt(mean(e1^2))
sqrt(mean(e2^2))

# MAE:
mean(abs(e1))
mean(abs(e2))

19. Scripts Used in Chapter 19
Script 19.1: ultimate-calcs.R

########################################################################
# Project X:
# "The Ultimate Question of Life, the Universe, and Everything"
# Project Collaborators: Mr. X, Mrs. Y
#
# R Script "ultimate-calcs"
# by: F Heiss
# Date of this version: February 08, 2016
########################################################################

# The main calculation using the method "square root"
# (http://mathworld.wolfram.com/SquareRoot.html)
sqrt(1764)

Script 19.2: projecty-master.R
########################################################################
# Bachelor Thesis Mr. Z
# "Best Practice in Using R Scripts"
#
# R Script "master"
# Date of this version: 2020-08-13
########################################################################

# Some preparations:
setwd(~/bscthesis/r)
rm(list = ls())

# Call R scripts
source("data.R" ,echo=TRUE,max=1000) # Data import and cleaning
source("descriptives.R",echo=TRUE,max=1000) # Descriptive statistics
source("estimation.R" ,echo=TRUE,max=1000) # Estimation of model
source("results.R" ,echo=TRUE,max=1000) # Tables and Figures



358 R Scripts

Script 19.3: LaTeXwithR.R
library(stargazer);library(xtable)
data(gpa1, package=’wooldridge’)

# Number of obs.
sink("numb-n.txt"); cat(nrow(gpa1)); sink()
# generate frequency table in file "tab-gender.txt"
gender <- factor(gpa1$male,labels=c("female","male"))
sink("tab-gender.txt")
xtable( table(gender) )
sink()

# calculate OLS results
res1 <- lm(colGPA ~ hsGPA , data=gpa1)
res2 <- lm(colGPA ~ ACT, data=gpa1)
res3 <- lm(colGPA ~ hsGPA + ACT, data=gpa1)

# write regression table to file "tab-regr.txt"
sink("tab-regr.txt")
stargazer(res1,res2,res3, keep.stat=c("n","rsq"),

type="latex",title="Regression Results",label="t:reg")
sink()

# b1 hat
sink("numb-b1.txt"); cat(round(coef(res1)[2],3)); sink()

# Generate graph as PDF file
pdf(file = "regr-graph.pdf", width = 3, height = 2)
par(mar=c(2,2,1,1))
plot(gpa1$hsGPA, gpa1$colGPA)
abline(res1)
dev.off()



Bibliography

Chang, W. (2012): R Graphics Cookbook, O’Reilly Media.

Croissant, Y. and G. Millo (2008): “Panel Data Econometrics in R: The plm Package,” Journal
of Statistical Software, 27.

Dalgaard, P. (2008): Introductory Statistics with R, Springer.

Field, A., J. Miles, and Z. Field (2012): Discovering Statistics Using R, Sage.

Fox, J. (2003): “Effect Displays in R for Generalised Linear Models,” Journal of Statistical Software,
8.

Fox, J. and S. Weisberg (2011): An R Companion to Applied Regression, Sage.

Henningsen, A. and J. D. Hamann (2007): “systemfit: A Package for Estimating Systems of
Simultaneous Equations in R,” Journal of Statistical Software, 23, 1–40.

Hlavac, M. (2013): “Stargazer: LaTeX code and ASCII text for well-formatted regression and
summary statistics tables.” http://CRAN.R-project.org/package=stargazer.

Hothorn, T. and B. S. Everitt (2014): A Handbook of Statistical Analyses using R, CRC Press,
Chapman & Hall, 3 ed.

Kleiber, C. and A. Zeileis (2008): Applied Econometrics with R, Springer.

Koenker, R. (2012): “Quantile Regression in R: A Vignette,” http://CRAN.R-
project.org/package=quantreg.

Long, J. S. and L. H. Ervin (2000): “Using heteroscedasity consistent standard errors in the
linear regression model,” The American Statistician, 54, 217–224.

Matloff, N. (2011): The Art of R Programming, No Starch Press.

Pagan, A. and A. Ullah (2008): Nonparametric Econometrics, Cambridge University Press.

Pfaff, B. (2008): “VAR, SVAR and SVEC Models: Implementation Within R Package vars,”
Journal of Statistical Software, 27.

Ryan, J. A. and J. M. Ulrich (2008): “xts: Extensible Time Series,” http://CRAN.R-
project.org/package=xts.

Silverman, B. W. (1986): Density Estimation for Statistics and Data Analysis, Chapman & Hall.

Teetor, P. (2011): R Cookbook, O’Reilly.

Therneau, T. M. and P. M. Grambsch (2000): Modeling Survival Data: Extending the Cox Model,
Springer.

Toomet, O. and A. Henningsen (2008): “Sample Selection Models in R: Package sampleSelec-
tion,” Journal of Statistical Software, 27.

Verzani, J. (2014): Using R for Introductory Statistics, CRC Press, Chapman & Hall.

Wickham, H. (2009): ggplot2: Elegant Graphics for Data Analysis, Springer.

——— (2014): Advanced R, CRC Press, Chapman & Hall.



360 BIBLIOGRAPHY

Wickham, H. and G. Grolemund (2016): R for Data Science: Import, Tidy, Transform, Visualize,
and Model Data, O’Reilly.

Wooldridge, J. M. (2010): Econometric Analysis of Cross Section and Panel Data, MIT Press.

——— (2013): Introductory Econometrics: A Modern Approach, Cengage Learning, 5th ed.

——— (2014): Introduction to Econometrics, Cengage Learning.

——— (2019): Introductory Econometrics: A Modern Approach, 7th Edition, Cengage Learning, 6th
ed.

Xie, Y. (2015): Dynamic Documents with R and knitr, CRC Press, Chapman & Hall.

Zeileis, A. (2004): “Econometric Computing with HC and HAC Covariance Matrix Estimators,”
Journal of Statistical Software, 11.

Zeileis, A. and G. Grothendieck (2005): “zoo: S3 Infrastructure for Regular and Irregular
Time Series,” Journal of Statistical Software, 14.



List of Wooldridge (2019) Examples

Example 02.03, 83–85
Example 02.04, 86
Example 02.05, 87
Example 02.06, 89
Example 02.07, 90
Example 02.08, 91
Example 02.09, 92
Example 02.10, 93
Example 02.11, 93
Example 02.12, 96
Example 03.01, 105, 110, 112
Example 03.02, 106
Example 03.03, 106
Example 03.04, 106
Example 03.05, 106
Example 03.06, 106
Example 04.01, 121
Example 04.03, 119
Example 04.08, 122
Example 04.10, 127
Example 05.03, 135
Example 06.01, 139
Example 06.02, 141
Example 06.03, 144
Example 06.05, 147
Example 06.06, 148
Example 07.01, 151
Example 07.06, 152
Example 07.08, 156
Example 08.02, 162
Example 08.04, 165
Example 08.05, 166
Example 08.06, 168
Example 08.07, 170
Example 09.02, 173
Example 10.02, 185
Example 10.04, 191, 193
Example 10.07, 194
Example 10.11, 195

Example 11.04, 197
Example 11.06, 204
Example 12.01, 210
Example 12.02, 206
Example 12.04, 207
Example 12.05, 209
Example 12.09, 211
Example 13.02, 215
Example 13.03, 217
Example 13.09, 223
Example 14.02, 225
Example 14.04, 227
Example 15.01, 238
Example 15.04, 239
Example 15.05, 240
Example 15.07, 242
Example 15.08, 243
Example 15.10, 243
Example 16.03, 247
Example 16.05, 248
Example 17.01, 254
Example 17.02, 267
Example 17.03, 264
Example 17.04, 269
Example 17.05, 271
Example 18.01, 273
Example 18.04, 275
Example 18.08, 281
Example 18.09, 283

Example B.06, 58

Example C.02, 62, 67
Example C.03, 63, 67
Example C.05, 64, 67
Example C.06, 66, 67
Example C.07, 66, 67

361





Index

˜ , 9
:, 13
::, 8
;, 6
[...], 16, 18
$, 20, 22
%*%, 19, 109
%>%, 43
~, 84
{...}, 70
2SLS, 240, 248
3SLS, 251
401ksubs.dta, 168

abline, 30, 85
abs, 11
adf.test, 275
AER package, 8, 154, 237, 248, 266
aes, 35
affairs.dta, 48
Anova, 142
ANOVA (analysis of variance), 142, 154, 156
apply, 71
ARCH models, 211
arima, 209
arrange, 42
arrows, 30
as.data.frame, 21
as.factor, 154
as.logical, 152
as.numeric, 110, 152
asymptotics, 75, 129
attach, 22
AUDIT.dta, 63
augmented Dickey-Fuller (ADF) test, 275
autocorrelation, see serial correlation
average partial effects (APE), 261, 266

BARIUM.dta, 187, 195, 207, 209
barplot, 49

Beta Coefficients, 139
Between, 220
between, 220
bgtest, 207
boxplot, 55
bptest, 165, 166
Breusch-Godfrey test, 205
Breusch-Pagan test, 165

c, 12
ca.jo, 280
ca.po, 280
car package, 8, 115, 124, 142, 158, 161, 162,

181, 237
CARD.dta, 239
cbind, 17
cdf, see cumulative distribution function
censored regression models, 269
censReg package, 8, 266
censReg, 266
central limit theorem, 75
CEOSAL1.dta, 51, 54, 83
character vector, 15
choose, 11
classical linear model (CLM), 117
Cochrane-Orcutt estimator, 209
cochrane.orcutt, 209
coef, 88, 193
coefficient of determination, see R2

coeftest, 162, 206, 210
cointegration, 280
colMeans, 23, 54
colnames, 17, 25
color, 36
colors, 29
colour, 35
colSums, 54
complete.cases, 179
confidence interval, 61, 78

for parameter estimates, 122

363



364 Index

for predictions, 146
for the sample mean, 61

confint, 122
control function, 242
convergence in distribution, 75
convergence in probability, 75
coord_cartesian, 39
cor, 54
correlated random effects, 230
count data, 263
cov, 54
CRIME2.dta, 219, 222
CRIME4.dta, 221, 223
critical value, 64
cumulative distribution function (cdf), 58
curve, 27, 57, 74
cut, 156

data, 21
data file, 21
data frame, 21
data set, 21
example data sets, 26
import and export, 25

data, 8
datasets package, 8
dbinom,dchisq,dexp,df,dgeom,dhyper,

dlnorm,dlogis,dnorm,dpois,
dt,dunif, 56

demeaning, 220
density, 51
detach, 22
dev.off, 33
deviance, 255
diag, 18
Dickey-Fuller (DF) test, 275
diff, 198, 203, 220, 222
difference-in-differences, 216
distributed lag

finite, 191
geometric (Koyck), 273
infinite, 273
rational, 273

distributions, 55
dplyr package, 41
dummies package, 8, 153
dummy variable, 151
dummy variable regression, 230
Durbin-Watson test, 208

dwtest, 208
dynlm package, 8, 191, 273
dynlm, 204

ecdf, 52
effect, 149
effects package, 8, 149
elasticity, 93
else, 70
encomptest, 175
Engle-Granger procedure, 280
Engle-Granger test, 280
error correction model, 280
errors, 10
errors-in-variables, 176
exists, 12
exp, 11
export, 25
expression, 32

F test, 123
factor, 15
factor, 15, 49
factor variable, 154
factorial, 11
FALSE, 15
feasible GLS, 170
FERTIL3.dta, 191
FGLS, 170
filter, 41
first differenced estimator, 222
fitted, 88, 166
fitted values, 88
fixed effects, 225
for, 70, 73, 100
formula, 84, 137
frequency table, 48
full_join, 44
function, 71
function plot, 27

generalized linear model (GLM), 255, 264
geom, 35
geom_area, 35
geom_boxplot, 35
geom_line, 35
geom_point, 35
geom_smooth, 35
getwd, 9



Index 365

ggplot, 35
ggplot2 package, 8, 34
ggsave, 39
glm, 255, 264
GPA1.dta, 119
graph

export, 33
gray, 29
group_by, 46

Hausman test of RE vs. FE, 229
haven package, 25
hccm, 161
head, 23
Heckman selection model, 271
help, 7
heteroscedasticity, 161

autoregressive conditional (ARCH), 211
hist, 51
histogram, 51
HSEINV.dta, 194
HTML documents, 287

I(...), 137
if, 70
import, 25
Inf, 178
influence.measures, 181
inner_join, 44
install.packages, 7
instrumental variables, 237
INTDEF.dta, 185, 188
interactions, 144
is.na, 178
ivreg, 237, 248

JTRAIN.dta, 243

kernel density plot, 51
KIELMC.dta, 217
knitr package, 8, 293

lag, 220
lapply, 71
LATEX, 293
law of large numbers, 75
LAWSCH85.dta, 156, 179
least absolute deviations (LAD), 182
left_join, 44
legend, 31

legend, 31
length, 13
library, 8
likelihood ratio (LR) test, 258
linear probability model, 253
linearHypothesis, 124, 135, 142, 158, 162,

191
lines, 30
list, 20, 69, 85, 249
lm, 84, 105, 113
LM Test, 135
lmtest package, 8, 162, 165, 173, 175, 258
lmtest, 207, 208, 210
load, 23
log, 11
log files, 287
logarithmic model, 93
logical variable, 152
logical vector, 15
logit, 255
logitmfx, 262
logLik, 255
long-run propensity (LRP), 193, 273
lrtest, 258
lrtest(res), 258
lrtest(restr, unrestr), 258
ls, 12

magrittr package, 43
maps package, 8
margEff, 266
margin=1, 49
marginal effect, 260
matchCoefs, 126, 158
matplot, 31, 149
Matrix package, 19
matrix, 17

multiplication, 19
matrix, 17
matrix algebra, 19
max, 13
maximum likelihood estimation (MLE), 255
mean, 54, 179
mean absolute error (MAE), 281
MEAP93.dta, 96
measurement error, 175
median, 54
mfx package, 8, 262
mi package, 180



366 Index

Microsoft Word documents, 287
min, 13
missing data, 178
MLB1.dta, 123
Monte Carlo simulation, 72, 98, 129
MROZ.dta, 238, 240, 271
mroz.dta, 254, 267
multicollinearity, 113

NA, 178, 222
na.rm, 180
names, 16, 20
NaN, 178
Newey-West standard errors, 210
nobs, 88
number of observations, 88
numeric, 13, 73
NYSE.dta, 197

object, 11
OLS

asymptotics, 129
coefficients, 88
estimation, 84, 105
matrix form, 109
on a constant, 94
sampling variance, 96, 113
through the origin, 94
variance-covariance matrix, 110

omitted variables, 112
orcutt package, 8
orcutt, 209
orthogonal polynomial, 140
outliers, 181
overall significance test, 126
overidentifying restrictions test, 243

p value, 65
package, 7
palette, 29
panel data, 219
par, 29
partial effect, 111, 260
partial effects at the average (PEA), 261, 266
pbinom,pchisq,pexp,pf,pgeom,phyper,

plnorm,plogis,pnorm,ppois,
pt,punif, 56

pdata.frame, 219
pdf, see probability density function

pdf, 33
PDF documents, 287
pdfetch package, 2
pdim, 219
Phillips–Ouliaris (PO), 280
phtest, 229
pie, 49
pipe, 43
plm package, 8, 219, 223, 243
plm, 223, 225, 227, 243
plot, 27, 56
plotmath, 32
pmf, see probability mass function
png, 33
po.test, 280
points, 30
Poisson regression model, 263
poly, 140
polynomial, 140
pooled cross-section, 215
POSIX, 188
Prais-Winsten estimator, 209
predict, 146, 281
prediction, 146
prediction interval, 148
print, 71
probability density function (pdf), 57
probability distributions, see distributions
probability mass function (pmf), 55
probit, 255
probitmfx, 262
prod, 13
prop.table, 48
pseudo R-squared, 255
pvar, 227

qbinom,qchisq,qexp,qf,qgeom,qhyper,
qlnorm,qlogis,qnorm,qpois,
qt,qunif, 56

qchisq, 135
qf, 123
quadratic functions, 140
quantile, 59
quantile, 54
quantile regression, 182
quantmod package, 2, 8, 189, 198
quantreg package, 8, 182
quasi-maximum likelihood estimators

(QMLE), 264



Index 367

R Markdown, 287
R2, 91
random effects, 227
random numbers, 59
random seed, 60
random walk, 200
rbind, 17
rbinom,rchisq,rexp,rf,rgeom,rhyper,

rlnorm,rlogis,rnorm,rpois,
rt,runif, 56

read.csv, 24
read.delim, 24
read.table, 24
recid.dta, 269
relevel, 154, 156
rename, 42
rep, 13
repeat, 71
replicate, 71
require, 8
RESET, 173
resettest, 173
resid, 88, 165, 205
residuals, 88
return, 71
rgb, 29
right_join, 44
rio package, 8, 25
rm, 12
rmarkdown package, 8, 287, 288
Rmd, 287
root mean squared error (RMSE), 281
round, 11
rowMeans, 54
rownames, 17
rowSums, 54
rq, 182
RStudio, 4
rugarch package, 212

sample, 59
sample selection, 271
sampleSelection package, 8, 271
sandwich package, 9, 161, 210, 237
save, 23
scale, 139
scale_color_grey, 37
scale_color_manual, 37
scatter plot, 27

scientific notation, 66, 90
script, 4
scripts, 285
sd, 54
seasonal effects, 195
select, 42
selection, 271
semi-logarithmic model, 93
seq, 13
serial correlation, 205

FGLS, 209
robust inference, 210
tests, 205

set.seed, 60
setwd, 9
shape, 37
shell, 294
simultaneous equations models, 247
sink, 287, 298
solve, 19, 109
sort, 13
source, 286
spurious regression, 278
sqrt, 11
standard error

heteroscedasticity and autocorrelation-
robust, 210

heteroscedasticity-robust, 161
of multiple linear regression parameters,

110
of predictions, 146
of simple linear regression parameters, 96
of the regression, 96
of the sample mean, 61
residual, 96

standardization, 139
stargazer package, 9, 127
stargazer, 227, 293
str, 23
studres, 181
subset, 22
sum, 13
summarize, 46
summary, 23, 54, 91, 105, 113, 118
survival package, 9, 267
survreg, 267, 269
SVEC, 280
Sweave package, 293
systemfit package, 9, 249



368 Index

systemfit, 249

t, 19, 109
t test, 64, 78, 117
t.test, 66
table, 48
text, 30
theme, 39
theme_light, 39
three stage least squares, 251
tibble, 41
tidyverse, 34
time series, 185
time trends, 194
tobit, 266
Tobit model, 266
transpose, 109
TRUE, 15
truncated regression models, 270
truncreg package, 9, 270
ts, 186
tseries package, 9, 212, 275
two stage least squares, 240
two-way graphs, 27

ungroup, 46
unit root, 200, 275
unobserved effects model, 222
ur.df, 275
urca package, 9, 275

var, 54
variance inflation factor (VIF), 113
vars package, 9, 280
vcovHAC, 210
vcovHC, 161, 234
vector, 12
vif, 115
VOTE1.dta, 87

WAGE1.dta, 86
WAGEPAN.dta, 225, 227, 230
WDI package, 9, 41, 44
WDI, 41
WDIsearch, 41
Weighted Least Squares (WLS), 168
while, 71
White standard errors, 161
White test for heteroscedasticity, 166

with, 22, 238
Within, 220, 225
wooldridge package, 8, 26
working directory, 9
write.table, 25

xtable package, 9, 293
xtable, 293
xts package, 9, 187

zoo package, 9, 187


	Preface
	Introduction
	Getting Started
	Software
	R Scripts
	Packages
	File names and the Working Directory
	Errors and Warnings
	Other Resources

	Objects in R
	Basic Calculations and Objects
	Vectors
	Special Types of Vectors
	Naming and Indexing Vectors
	Matrices
	Lists

	Data Frames and Data Files
	Data Frames
	Subsets of Data
	R Data Files
	Basic Information on a Data Set
	Import and Export of Text Files
	Import and Export of Other Data Formats
	Data Sets in the Examples

	Base Graphics
	Basic Graphs
	Customizing Graphs with Options
	Overlaying Several Plots
	Legends
	Exporting to a File

	Data Manipulation and Visualization: The Tidyverse
	Data visualization: ggplot Basics
	Colors and Shapes in ggplot Graphs
	Fine Tuning of ggplot Graphs
	Basic Data Manipulation with dplyr
	Pipes
	More Advanced Data Manipulation

	Descriptive Statistics
	Discrete Distributions: Frequencies and Contingency Tables
	Continuous Distributions: Histogram and Density
	Empirical Cumulative Distribution Function (ECDF)
	Fundamental Statistics

	Probability Distributions
	Discrete Distributions
	Continuous Distributions
	Cumulative Distribution Function (CDF)
	Random Draws from Probability Distributions

	Confidence Intervals and Statistical Inference
	Confidence Intervals
	t Tests
	p Values
	Automatic calculations

	More Advanced R
	Conditional Execution
	Loops
	Functions
	Outlook

	Monte Carlo Simulation
	Finite Sample Properties of Estimators
	Asymptotic Properties of Estimators
	Simulation of Confidence Intervals and t Tests


	Regression Analysis with Cross-Sectional Data
	The Simple Regression Model
	Simple OLS Regression
	Coefficients, Fitted Values, and Residuals
	Goodness of Fit
	Nonlinearities
	Regression through the Origin and Regression on a Constant
	Expected Values, Variances, and Standard Errors
	Monte Carlo Simulations
	One sample
	Many Samples
	Violation of SLR.4 
	Violation of SLR.5 


	Multiple Regression Analysis: Estimation
	Multiple Regression in Practice
	OLS in Matrix Form
	Ceteris Paribus Interpretation and Omitted Variable Bias
	Standard Errors, Multicollinearity, and VIF

	Multiple Regression Analysis: Inference
	The t Test
	General Setup
	Standard case
	Other hypotheses

	Confidence Intervals
	Linear Restrictions: F-Tests
	Reporting Regression Results

	Multiple Regression Analysis: OLS Asymptotics
	Simulation Exercises
	Normally Distributed Error Terms
	Non-Normal Error Terms
	(Not) Conditioning on the Regressors

	LM Test

	Multiple Regression Analysis: Further Issues
	Model Formulae
	Data Scaling: Arithmetic Operations Within a Formula
	Standardization: Beta Coefficients
	Logarithms
	Quadratics and Polynomials
	ANOVA Tables
	Interaction Terms

	Prediction
	Confidence Intervals for Predictions
	Prediction Intervals
	Effect Plots for Nonlinear Specifications


	Multiple Regression Analysis with Qualitative Regressors
	Linear Regression with Dummy Variables as Regressors
	Logical Variables
	Factor variables
	Breaking a Numeric Variable Into Categories
	Interactions and Differences in Regression Functions Across Groups

	Heteroscedasticity
	Heteroscedasticity-Robust Inference
	Heteroscedasticity Tests
	Weighted Least Squares

	More on Specification and Data Issues
	Functional Form Misspecification
	Measurement Error
	Missing Data and Nonrandom Samples
	Outlying Observations
	Least Absolute Deviations (LAD) Estimation


	Regression Analysis with Time Series Data
	Basic Regression Analysis with Time Series Data
	Static Time Series Models
	Time Series Data Types in R
	Equispaced Time Series in R
	Irregular Time Series in R

	Other Time Series Models
	The dynlm Package
	Finite Distributed Lag Models
	Trends
	Seasonality


	Further Issues In Using OLS with Time Series Data
	Asymptotics with Time Series
	The Nature of Highly Persistent Time Series
	Differences of Highly Persistent Time Series
	Regression with First Differences

	Serial Correlation and Heteroscedasticity in Time Series Regressions
	Testing for Serial Correlation of the Error Term
	FGLS Estimation
	Serial Correlation-Robust Inference with OLS
	Autoregressive Conditional Heteroscedasticity


	Advanced Topics
	Pooling Cross-Sections Across Time: Simple Panel Data Methods
	Pooled Cross-Sections
	Difference-in-Differences
	Organizing Panel Data
	Panel-specific computations
	First Differenced Estimator

	Advanced Panel Data Methods
	Fixed Effects Estimation
	Random Effects Models
	Dummy Variable Regression and Correlated Random Effects
	Robust (Clustered) Standard Errors

	Instrumental Variables Estimation and Two Stage Least Squares
	Instrumental Variables in Simple Regression Models
	More Exogenous Regressors
	Two Stage Least Squares
	Testing for Exogeneity of the Regressors
	Testing Overidentifying Restrictions
	Instrumental Variables with Panel Data

	Simultaneous Equations Models
	Setup and Notation
	Estimation by 2SLS
	Joint Estimation of System
	Outlook: Estimation by 3SLS

	Limited Dependent Variable Models and Sample Selection Corrections
	Binary Responses
	Linear Probability Models
	Logit and Probit Models: Estimation
	Inference
	Predictions
	Partial Effects

	Count Data: The Poisson Regression Model
	Corner Solution Responses: The Tobit Model
	Censored and Truncated Regression Models
	Sample Selection Corrections

	Advanced Time Series Topics
	Infinite Distributed Lag Models
	Testing for Unit Roots
	Spurious Regression
	Cointegration and Error Correction Models
	Forecasting

	Carrying Out an Empirical Project
	Working with R Scripts
	Logging Output in Text Files
	Formatted Documents and Reports with R Markdown
	Basics
	Advanced Features
	Bottom Line

	Combining R with LaTeX
	Automatic Document Generation using Sweave and knitr
	Separating R and LaTeX code



	Appendices
	R Scripts
	Scripts Used in Chapter 01
	Scripts Used in Chapter 02
	Scripts Used in Chapter 03
	Scripts Used in Chapter 04
	Scripts Used in Chapter 05
	Scripts Used in Chapter 06
	Scripts Used in Chapter 07
	Scripts Used in Chapter 08
	Scripts Used in Chapter 09
	Scripts Used in Chapter 10
	Scripts Used in Chapter 11
	Scripts Used in Chapter 12
	Scripts Used in Chapter 13
	Scripts Used in Chapter 14
	Scripts Used in Chapter 15
	Scripts Used in Chapter 16
	Scripts Used in Chapter 17
	Scripts Used in Chapter 18
	Scripts Used in Chapter 19

	Bibliography
	List of Wooldridge (2019) Examples
	Index


